Home
Class 12
MATHS
int(pi/4)^(pi/2) e^x(logsinx+cotx)dx...

`int_(pi/4)^(pi/2) e^x(logsinx+cotx)dx`

A

` e^(pi//4) log2 `

B

` -e^(pi//4) log2 `

C

` 1/2 e^(pi//4) log2`

D

` -1/2 e^(pi//4) log 2 `

Text Solution

Verified by Experts

The correct Answer is:
C

Let `l=int_(pi//4)^(pi//2)e^(x)` (log sin x + cot x)dx
`rArr l = int_(pi//4)^(pi//2)e^(x)` log sin x dx `+ int_(pi//4)^(pi//2)e^(x)` cot x dx
`= int_(pi//4)^(pi//2)e^(x)` log sin x dx `+ [e^(x) log sin x]_(pi//4)^(pi//2)-int_(pi//4)^(pi//2)e^(x)` log sin x dx
`= e^(pi//2)log sin.(pi)/(2)-e^(pi//4)log sin.(pi)/(4)`
`= -e^(pi//4)log((1)/(sqrt(2)))`
`=(1)/(2)e^(pi//4)log 2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_((pi)/(4))^((pi)/(2))e^(x)(log sin x+cot x)dx

inte^(3logsinx)cotx dx=

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

int_((-pi)/(4))^((pi)/(2))e^(-x)sin xdx=

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

int_(0)^(pi//2) log (cotx ) dx=

int_(pi//3)^(pi//4)(tanx+cotx)^(2)dx

Prove that int_(0)^(pi//2)(2logsinx-logsin2x)dx=(pi)/(2)(log2) .

int_(0)^(pi//4)e^(x)sin x dx =