Home
Class 12
MATHS
The value of underset(0)overset(1)int ta...

The value of `underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx` is

A

1

B

0

C

`-1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let `= int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx`
`=int_(0)^(1)tan^(-1)x dx+int_(0)^(1)tan^(-1)(x-1)dx`
`= int_(0)^(1)tan^(-1)x dx+int_(0)^(1)tan^(-1)(1-x-1)dx`
`= int_(0)^(1)tan^(-1)x dx - int_(0)^(1)tan^(-1)x dx =0`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int tan^(-1)((2x)/(1-x^(2)))dx

int tan^(-1)((1)/(1-x+x^(2)))dx

int_(0)^(1) tan ^(-1) ((2x-1)/(1+x-x^(2)))dx =

Evaluate: int tan^(-1)((2x)/(1-x^(2)))dx

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int_(0)^(1)Tan^(-1)((2x)/(1-x^(2)))dx=

int(x tan^(-1)x^(2))/(1+x^(4))dx

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0