Home
Class 12
MATHS
The value of int(-1)^(1) log ((x-1)/(x+1...

The value of `int_(-1)^(1) log ((x-1)/(x+1))dx` is

A

1

B

2

C

0

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

Let `f(x)=log((x-1)/(x+1))`
`f(-x)=log((-x-1)/(-x+1))=-log((x-1)/(x+1))=-f(x)`
`rArr f(x)` is an odd function.
`therefore " " int_(-1)^(1)log((x-1)/(x+1))dx=0`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)log((1+x)/(1-x))dx=

int_(-1)^(1)log((4-x)/(4+x))dx=

I=int_(-1)^(1)log((2-x)/(2+x))dx

int_(0)^(1) log (1/x-1) dx =

Evaluate : int_(0)^(1)log ((1)/(x) -1) dx

int_(-1)^1 log((3-x)/(3+x)) dx

int_(1)^(3)(log x)/((x+1)^(2))dx

int_(1)^(3)(log x)/((x+1)^(2))dx

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

The value of int_(0)^(1) (8 log(1+x))/(1+x^(2)) dx is