Home
Class 12
MATHS
int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx...

`int_(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)`

A

`pi/12`

B

`pi/2`

C

`pi/6`

D

`pi/4`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `l=int_(pi//6)^(pi//3)(dx)/(1+sqrt(tan x))= int_(pi//6)^(pi//3)((sqrt(cos x))/(sqrt(sin x)+sqrt(cos x)))dx`
`rArr l = int_(pi//6)^(pi//3)(sqrt(sin x))/(sqrt(cos x)+sqrt(sin x))dx` ….(ii)
`[because int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx]`
On adding Eqs. (i) and (ii), we get
`2l=int_(pi//6)^(pi//3)1dx=[x]_(pi//6)^(pi//3)=(pi)/(6)`
`rArr " " l = (pi)/(12)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3)(1)/(1+tan x) dx=

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

Evaluate of each of the following integral: int_(pi//6)^(pi//3)1/(1+sqrt(tanx))dx

int_(0)^(pi//2)(dx)/((1+sqrt(tanx)))=(pi)/(4)

Evaluate the following : int_(pi//6)^(pi//3)(1)/(1+sqrt(cotx))dx

int_(pi/12)^(pi/2)(dx)/(1+sqrt(cotx))

int_(0)^(pi//2)(1)/((1+tanx))dx=?

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I_(2) = (sqrt(sinx)dx)/(sqrt(sinx) + sqrt(cosx)) What is I_(1) equal to ?