Home
Class 12
MATHS
int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx i...

` int _(1)^(2)e^(x) (1/x - 1/(x^(2)))dx ` is qual to

A

` e-(e^(2))/2`

B

` (e^(2))/2 - e`

C

` (e^(2))/2 + e`

D

` (e^(2))/2 - 2 `

Text Solution

Verified by Experts

The correct Answer is:
B

`int_(1)^(2)e^(x)((1)/(x)-(1)/(x^(2)))dx=[(1)/(x)e^(x)]_(1)^(2)+int_(1)^(2)(e^(x))/(x^(2))dx-int_(1)^(2)(e^(x))/(x^(2))dx`
`= (e^(2))/(2)-e`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int[e^(x)(1/x-1/(x^(2)))]dx

int(x+1)^(2)e^(x)dx

int_(1)^(2)(e^(1//x))/(x^(2))dx

int_(-1)^(1)(e^(x)+e^(-x))/(2(1+e^(2x)))dx is equal to

" *10."int e^(x)((1)/(x)-(1)/(x^(2)))dx

int e^(x)((1)/(x)-(1)/(x^(2)))dx

int e^(x){((1)/(x))-((1)/(x^(2)))}dx

int e^(x)((1)/(x)-(1)/(x^(2)))dx

int_(0)^(1)(e^(x)*x)/((1+x)^(2))dx

int(e^(2x)+(1)/(1+x^(2)))dx