Home
Class 12
MATHS
int(0)^(1) (x^(2))/(1+x^(2))dx is equal ...

`int_(0)^(1) (x^(2))/(1+x^(2))dx` is equal to

A

`pi/4-1`

B

`1-pi/2`

C

`pi/2-1`

D

`1-pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{x^2}{1+x^2} \, dx \), we can use a clever technique by rewriting the integrand. ### Step 1: Rewrite the integrand We can express the integrand as: \[ \frac{x^2}{1+x^2} = 1 - \frac{1}{1+x^2} \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{1} \left( 1 - \frac{1}{1+x^2} \right) \, dx \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I = \int_{0}^{1} 1 \, dx - \int_{0}^{1} \frac{1}{1+x^2} \, dx \] ### Step 3: Evaluate the first integral The first integral is straightforward: \[ \int_{0}^{1} 1 \, dx = [x]_{0}^{1} = 1 - 0 = 1 \] ### Step 4: Evaluate the second integral The second integral is: \[ \int_{0}^{1} \frac{1}{1+x^2} \, dx \] This integral can be evaluated using the formula for the arctangent: \[ \int \frac{1}{1+x^2} \, dx = \tan^{-1}(x) \] Thus, \[ \int_{0}^{1} \frac{1}{1+x^2} \, dx = \left[ \tan^{-1}(x) \right]_{0}^{1} = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Step 5: Combine the results Now we can substitute back into our expression for \( I \): \[ I = 1 - \frac{\pi}{4} \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{1} \frac{x^2}{1+x^2} \, dx = 1 - \frac{\pi}{4} \]

To solve the integral \( I = \int_{0}^{1} \frac{x^2}{1+x^2} \, dx \), we can use a clever technique by rewriting the integrand. ### Step 1: Rewrite the integrand We can express the integrand as: \[ \frac{x^2}{1+x^2} = 1 - \frac{1}{1+x^2} \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(2-x^(2))/(1+x^(2))dx=

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

The value of int_(0)^(1)x^(2)e^(x)dx is equal to

int _(0)^(1) (dx)/(1+x+x^(2)) is equal to

int_(0)^(1) (1)/(1+x+2x^(2))dx

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to