Home
Class 12
PHYSICS
Find the potential difference V(AB) betw...

Find the potential difference `V_(AB)` between `A (0,0,0) and B (1 m , 1 m,1 m)` in an electric field :
(i) `vec E = (y hat i + x hat j) Vm^-1`
(ii) `vec E = (3 x^2 y hat i + x^3 hat j) Vm^-1`.

Text Solution

Verified by Experts

(i) As `dV = - vec E. vec d r`
Here `vec E = (y hat i + x hat j)Vm^-1 and vec d r = d x hat i + d y hat j + d z hat k`
Hence, `dV = -(y hat i + x hat j).(d x hat i + d y hat j + d z hat k)`
`= - y d x + x d y = - d (x y)`
[Using multiplication rule of derivative]
`V_(AB) = - underset(((1, 1, 1)))overset(((0, 0, 0)))(int) d(x y) = - [xy]_(((1, 1, 1)))^(((0, 0, 0))) = 1 V`
(ii) As `dV = int vec E . vec d r`,
`vec E = -(3 x^3 y hat i + x^3 hat j)` and `vec d r = d x hat i + d y hat j + d z hat k`
`vec d V = -(3 x^2 y hati + x^3 hat j). (d x hat i + d y hat j + d z hat k)`
Hence, `dV = -(3 x^2 y d x + x^3 d y) = - d (x^3 y)`
[Using multiplication rule of differentiation]
`V_(AB) = - underset(((1, 1, 1)))overset(((0, 0, 0)))(int) d(x^3 y) = - [x^3 y] _(((1,1,1)))^(((0,0,0))) = 1 V`.
Promotional Banner

Topper's Solved these Questions

  • ELECTRIC POTENTIAL

    CENGAGE PHYSICS|Exercise Examples|9 Videos
  • ELECTRIC POTENTIAL

    CENGAGE PHYSICS|Exercise Exercise 3.1|23 Videos
  • ELECTRIC FLUX AND GAUSS LAW

    CENGAGE PHYSICS|Exercise MCQ s|38 Videos
  • ELECTRICAL MEASURING INSTRUMENTS

    CENGAGE PHYSICS|Exercise M.C.Q|2 Videos

Similar Questions

Explore conceptually related problems

The potential field of an electric field vec(E)=(y hat(i)+x hat(j)) is

Find the potential difference between points A and B in an electric field vec(E ) = (2hat(i) + 3hat(j) + 4hat(k)) NC^(-1) where vec(r_(A)) = (hat(i) -2hat(j) + hat(k))m and vec(r_(B)) = (2hat(i) + hat(j) - 2hat(k))m

Find the potential V of an electrostatic field vec E = a(y hat i + x hat j) , where a is a constant.

Potential difference between two points (V_(A) - V_(B)) in an electric field E = (2 hat(i) - 4 hat(j)) N//C , where A = (0, 0) and B = (3m, 4m) is

Charge Q is given a displacement vec r = a hat i + b hat j in an electric field vec E = E_1 hat i + E_2 hat j . The work done is.

Find V_(ab) in an electric fiels vec E = (2 hat I + 3 hat j + 4 hat k) NC^-1 where vec r_a = (hat I - 2 hat j + hat k) m and vec r_b = (2 hat i + hat j - 2 hat k) m .

If vec(E)=2y hat(i)+2x hat(j) , then find V (x, y, z)

The displacement of a charge Q in the electric field vec(E) = e_(1)hat(i) + e_(2)hat(j) + e_(3) hat(k) is vec(r) = a hat(i) + b hat(j) . The work done is

An electric dipole moment vec P = ( 2. 0 hat I + 3 . 0 hat j) mu C . M is placed in a usifrom electric field vec E = (3 hat I + 2 . 0hat k ) xx 10^5 N C^(-1) .

An electron enters an electric field having intensity vec(E )= (3 hat(i) + 6hat(j) +2 hat(k)) Vm^(-1) and magnetic field having induction vec(B)= (2 hat(i) + 3hat(j)) T with a velocity vec(V)= (2 hat(i) + 3hat(j)) ms^(-1) . The magnitude of the force acting on the electron is (Given e= -1.6 xx 10^(-19)C )