Home
Class 12
PHYSICS
Referring to the spherical equipotential...

Referring to the spherical equipotential lines in (Fig. 3.36)A, find
(i) `vec E = f ( r)`
(ii) `vec E` - pattern.
a. .
b. .
c. .

Text Solution

Verified by Experts

(a) For the first equipotential
`60 V xx (10)/(100) (m) = 6 Vm`
For the second equipotential
`30 V xx (20)/(100) (m) = 6 Vm`
For the third equipotential
`10 V xx (60)/(100) (m) = 6 Vm`
We can understand that are product of potential (V) and radial distance (r) of equipotential lines [ as in Fig 3.36 B] is equal to `6 Vm^-1`. Hence, general relation of potential (V) and radial distance (r) can be written as
`V = (6)/ ( r) Vm^-1`
Since `vec E - (del V)//(del r) hat r`, substituting `V = 6//r`, we have
`vec E = - (del)/(del r) (- (6)/( r)) hat r Vm^-1`
or `vec E = (6)/(r^2) hat r Vm^-1`
(b) Since `vec E` is directed in `hat r` - direction and obeys inverse square law, E must be outward [as shown in Fig. 3.36 C].
The above E - field must be caused by a positive point charge.
Promotional Banner

Topper's Solved these Questions

  • ELECTRIC POTENTIAL

    CENGAGE PHYSICS|Exercise Examples|9 Videos
  • ELECTRIC POTENTIAL

    CENGAGE PHYSICS|Exercise Exercise 3.1|23 Videos
  • ELECTRIC FLUX AND GAUSS LAW

    CENGAGE PHYSICS|Exercise MCQ s|38 Videos
  • ELECTRICAL MEASURING INSTRUMENTS

    CENGAGE PHYSICS|Exercise M.C.Q|2 Videos

Similar Questions

Explore conceptually related problems

If V=2r^(2) then find (i) vec(E) (1, 0, -2) (ii) vec(E) (r=2)

(Figure 3.27) shows equipotential surfaces. What is the direction of electric field vec E at P and R? .

.Vectors vec A , vec B and vec c are shown in figure.Find angle between (i) vec A and vec B . (ii) vec A and vec C . , (iii) vec B and vec C

If vec rdot vec a= vec rdot vec b= vec rdot vec c=1/2 or some nonzero vector vec r , then the area of the triangle whose vertices are A( vec a),B( vec b)a n dC( vec c)i s( vec a , vec b , vec c are non-coplanar) |[ vec a vec b vec c]| b. | vec r| c. |[ vec a vec b vec c] vec r| d. none of these

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

A charged particle goes undeflected in a region containing electric and magnetic field. It is possible that (i) vec(E) || vec(B). vec(v) || vec(E) (ii) vec(E) is not parallel to vec(B) (iii) vec(v) || vec(B) but vec(E) is not parallel to vec(B) (iv) vec(E)||vec(B) but vec(v) is not parallel to vec(E)

Vectors vec Aa n d vec B satisfying the vector equation vec A+ vec B= vec a , vec Axx vec B= vec ba n d vec A*vec a=1,w h e r e vec aa n d vec b are given vectors, are a. vec A=(( vec axx vec b)- vec a)/(a^2) b. vec B=(( vec bxx vec a)+ vec a(a^2-1))/(a^2) c. vec A=(( vec axx vec b)+ vec a)/(a^2) d. vec B=(( vec bxx vec a)- vec a(a^2-1))/(a^2)

If vec a ,\ vec b ,\ vec c are three non-zero vectors, no two f thich are collinear and the vector vec a+ vec b is collinear with vec c ,\ vec b+ vec c is collinear with vec a ,\ t h e n\ vec a+ vec b+ vec c= a. vec a b. vec b c. vec c d. none of these

Find the equation of a straight line in the plane vec r* vec n=d which is parallel to vec r= vec a+lambda vec b and passes through the foot of the perpendicular drawn from point P( vec a)to vec rdot vec n=d(w h e r e vec ndot vec b=0)dot a. vec r= vec a+((d- vec a*vec n)/(n^2))n+lambda vec b b. vec r= vec a+((d- vec a* vec n)/n)n+lambda vec b c. vec r= vec a+(( vec a* vec n-d)/(n^2))n+lambda vec b d. vec r= vec a+(( vec a* vec n-d)/n)n+lambda vec b