Home
Class 12
PHYSICS
Find the de Broglie wavlength of a neutr...

Find the de Broglie wavlength of a neutron at `127^circ`C Given that Boltzmann's constant `k=1.38xx10^(-23)J` `"molecule"^-1` `K^-1`. Planck's constant `=6.625xx10^(-34)Js`, mass of neutron `=1.66xx10^(-27)kg`.

Text Solution

AI Generated Solution

To find the de Broglie wavelength of a neutron at \(127^\circ C\), we will follow these steps: ### Step 1: Convert Temperature to Kelvin First, we need to convert the temperature from Celsius to Kelvin using the formula: \[ T(K) = T(°C) + 273.15 \] Substituting the given temperature: ...
Promotional Banner

Topper's Solved these Questions

  • PHOTOELECTRIC EFFECT

    CENGAGE PHYSICS|Exercise Exercise 3.2|8 Videos
  • PHOTOELECTRIC EFFECT

    CENGAGE PHYSICS|Exercise Subjective|16 Videos
  • PHOTOELECTRIC EFFECT

    CENGAGE PHYSICS|Exercise Examples|8 Videos
  • NUCLEI

    CENGAGE PHYSICS|Exercise QUESTION BANK|59 Videos
  • RAY OPTICS

    CENGAGE PHYSICS|Exercise DPP 1.6|12 Videos

Similar Questions

Explore conceptually related problems

Find the de-Broglie wavelength of an electron in a metal at 127^@C . Given, mass of electron =9.11xx10^(-31)kg , Boltsmann constant =1.38xx10^(-23)"J mole"^-1K^-1 , Plank constant =6.63xx10^(-34)Js .

Calculate the kinetic energy of one mole of argon at 127^(@)C . Given,Boltzmann's constant, k_(B) = 1.381 xx 10^(-23) J "molecular"^(-1) K^(-1) . Avogardro numbe, N = 6.02 xx 10^(23) "mol"^(-1)

Calculate the de Broglie wavelength of an electron moving with 1//3rd of the speed of light in vacuum. (Neglect relativistic effect) (Planck's constant : h=6.63xx10^(-34)Js , Mass of electron : m=9.11xx10^(-28)g )

The de Brogile wavelength of an electron (mass =1 xx 10^(-30) kg, charge = 1.6 xx 10^(-19)C) with a kinetic energy of 200 eV is (Planck's constant = 6.6 xx 10^(-34) Js)

The de Broglie wavelength of neutrons in thermal equilibrium is (given m_n=1.6xx10^(-27) kg)

The de - Broglie wavelength of an electron having 80 ev of energy is nearly ( 1eV = 1.6 xx 10^(-19) J , Mass of electron = 9 xx 10^(-31) kg Plank's constant = 6.6 xx 10^(-34) J - sec )

Estimate the average thermal energy of a helium atom at (i) room temperature (27^(@)C) . Boltzmann constant =1.38 xx 10^(-23) JK^(-1)

The de Broglie wavelength of an electron in a metal at 27^(@)C is ("Given"m_(e)=9.1xx10^(-31)kg,k_(B)=1.38xx10^(-23)JK^(-1))

Find the de Broglie wavelength of 2 MeV proton. Mass of proton =1.64xx10^(-27)kg , h=6.625xx10^(-34)Js

The temperature of an ideal gas in 3- deimensions is 300 K. The corresponding de - Broglie wavelength of the electron approximately at 300 K , is : [ m_e = mass of electron = 9 xx 10^(-31) kg h = Planck constant = 6.6 xx 10^(-34) Js k_B = Boltzmann constant = 1.38 xx 10^(-33)JK^(-1) ]