Home
Class 12
PHYSICS
Find the effective value of current. i...

Find the effective value of current.
`i=2 sin 100 (pi)t + 2 cos (100 pi t + 30^(@))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the effective (RMS) value of the current given by the equation: \[ i = 2 \sin(100 \pi t) + 2 \cos(100 \pi t + 30^\circ) \] we will follow these steps: ### Step 1: Rewrite the Current Equation The given current can be rewritten as: \[ i = 2 \sin(100 \pi t) + 2 \cos(100 \pi t + 30^\circ) \] ### Step 2: Expand the Cosine Term Using the cosine addition formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] we can expand the cosine term: \[ \cos(100 \pi t + 30^\circ) = \cos(100 \pi t) \cos(30^\circ) - \sin(100 \pi t) \sin(30^\circ) \] Substituting the known values: - \(\cos(30^\circ) = \frac{\sqrt{3}}{2}\) - \(\sin(30^\circ) = \frac{1}{2}\) We have: \[ 2 \cos(100 \pi t + 30^\circ) = 2 \left( \cos(100 \pi t) \cdot \frac{\sqrt{3}}{2} - \sin(100 \pi t) \cdot \frac{1}{2} \right) \] \[ = \sqrt{3} \cos(100 \pi t) - \sin(100 \pi t) \] ### Step 3: Combine the Terms Now substituting back into the equation for \(i\): \[ i = 2 \sin(100 \pi t) + \sqrt{3} \cos(100 \pi t) - \sin(100 \pi t) \] \[ = (2 - 1) \sin(100 \pi t) + \sqrt{3} \cos(100 \pi t) \] \[ = \sin(100 \pi t) + \sqrt{3} \cos(100 \pi t) \] ### Step 4: Express in the Form \(R \sin(100 \pi t + \phi)\) To express this in the form \(R \sin(100 \pi t + \phi)\), we identify: - \(a = 1\) (coefficient of \(\sin\)) - \(b = \sqrt{3}\) (coefficient of \(\cos\)) Now, calculate \(R\): \[ R = \sqrt{a^2 + b^2} = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] ### Step 5: Calculate the Phase Angle \(\phi\) The phase angle \(\phi\) can be calculated using: \[ \tan \phi = \frac{b}{a} = \frac{\sqrt{3}}{1} = \sqrt{3} \] Thus, \[ \phi = \tan^{-1}(\sqrt{3}) = 60^\circ \text{ or } \frac{\pi}{3} \text{ radians} \] ### Step 6: Final Expression for Current So we can express the current as: \[ i = 2 \sin(100 \pi t + 60^\circ) \] ### Step 7: Calculate the RMS Value The effective (RMS) value of the current is given by: \[ I_{\text{rms}} = \frac{I_0}{\sqrt{2}} \] Where \(I_0\) is the peak current: \[ I_0 = 2 \] Thus, \[ I_{\text{rms}} = \frac{2}{\sqrt{2}} = \sqrt{2} \text{ A} \] ### Final Answer The effective value of the current is: \[ \boxed{\sqrt{2} \text{ A}} \] ---

To find the effective (RMS) value of the current given by the equation: \[ i = 2 \sin(100 \pi t) + 2 \cos(100 \pi t + 30^\circ) \] we will follow these steps: ### Step 1: Rewrite the Current Equation The given current can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • ALTERNATING CURRENT

    CENGAGE PHYSICS|Exercise Exercises Single Correct|63 Videos
  • ALTERNATING CURRENT

    CENGAGE PHYSICS|Exercise Exercises Multiple Correct|5 Videos
  • ALTERNATING CURRENT

    CENGAGE PHYSICS|Exercise Exercise 5.1|15 Videos
  • OSCILLATIONS

    CENGAGE PHYSICS|Exercise QUESTION BANK|39 Videos
  • ATOMIC PHYSICS

    CENGAGE PHYSICS|Exercise ddp.4.3|15 Videos

Similar Questions

Explore conceptually related problems

Find the effective value of current i=2+4 cos 100 pi t .

The instantaneous value of current in an A.C. circuit is I=2 sin (100 pi t +pi //3)A .The current will be maximum for the first time at

The instantaneous value of current in an ac circuit is I = 2 sin (100pit + pi//3) A . The current at the beginning (t = 0) will be –

Find the value of (cos pi+i sin pi)

The voltage of an AC source varies with time according to the relation: E = 120 sin 100 pi t cos 100 pi t V . What is the peak voltage of the source?

Find the rms value of current i=I_(m)sin omegat from (i) t=0 "to" t=(pi)/(omega) (ii) t=(pi)/(2omega) "to" t=(3pi)/(2omega)

The voltage of A.C source varies with tiem according equation. V = 120 sin 100 pi t cos 100 pi t .Then the frequency of source is