Home
Class 12
MATHS
log(3sqrt(2))324...

`log_(3sqrt(2))324`

Text Solution

Verified by Experts

The correct Answer is:
x=4
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

log_(3sqrt(7))2401

If x=(2)^((log_(2)3log_(3)4log_(4)5)......log_(19)20),y=5^(log_(2)3)-3^(log_(2)5),z=log_(sqrt(256))sqrt(log_(sqrt(2))4) then value of (x+y).z is

If A=log_(sqrt(3))(sqrt(3sqrt(3sqrt(3sqrt(3)))))* then the value of log_(sqrt(2))(8A+1) is equal to

If log_(sqrt(3))5=a and log_(sqrt(3))2=b then value of log_(sqrt(3))300 is

evaluate 5^(log_((1)/(3))((1)/(2)))+log_(sqrt(2))((4)/(sqrt(7)+sqrt(3)))+log_((1)/(2))((1)/(10+2sqrt(21)))

5^(log_((1)/(5))((1)/(2)))+log_(sqrt(2))((4)/(sqrt(7)+sqrt(3)))+log_((1)/(2))((1)/(10+2sqrt(21)))

The value of 5^(log_((1)/(5))((1)/(2)))+log_(sqrt(2))(4)/(sqrt(7)+sqrt(3))+log_((1)/(2))(1)/(10+2sqrt(21)) is.....

Determine the value of log_(3sqrt(2))((1)/(18))* a.2b .-2c.sqrt(2)d.sqrt(3)