Home
Class 12
MATHS
Prove that asqrt(loga b)-bsqrt(logb a)=...

Prove that `asqrt(log_a b)-bsqrt(log_b a)=0`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Prove that a sqrt(log_(a)b)-b sqrt(log_(b)a)=0

Prove that 2^{{sqrt(log_a 4sqrtab + log_b 4sqrtab)-sqrt((log_a)4sqrt(b/a)+log_b 4sqrt(a/b))}sqrt(log_a b))= { 2 , b gea gt1and 2^(log_b a) , 1 ltblta

Prove that: 2^(sqrt((log)_(a)4sqrt(ab)+(log)_(b)4sqrt(ab))-(log)_(a)4sqrt((b)/(a))+(log)_(b)4sqrt((pi)/(b)))sqrt((log)_(a)b)={2quad if b>=a>1 and 2^(log_(a)(b)) if 1

Prove that a^x-b^y=0 w h e r e x=" "sqrt(("log")_a b) & y=sqrt((log)_b a ), a >0, b >0 & a , b!=1

Prove that a^(x)-b^(y)=0 where x=sqrt(log_(a)(b)&y)=sqrt(log_(b)(a)),a>0,b>0&a,b!=1

prove that a^(x)-b^(y)=0 where x=sqrt(log_(a)b) and y=sqrt(log_(b)a),a>0,b>0 and a,b!=1

Prove that: (log_(a)(log_(b)a))/(log_(b)(log_(a)b))=-log_(a)b

Prove that log_(ab)(x)=((log_(a)(x))(log_(b)(x)))/(log_(a)(x)+log_(b)(x))

Prove that: log_(a)x xx log_(b)y=log_(b)x xx log_(a)y

Prove that ((log)_(a)N)/((log)_(ab)N)=1+(log)_(a)b