Home
Class 12
MATHS
Arrange in ascending order log(2)(x),log...

Arrange in ascending order
`log_(2)(x),log_(3)(x),log_(e)(x),log_(10)(x)`, if
I.`xgt1`

Text Solution

Verified by Experts

The correct Answer is:
`log_(10)(x)lt log_(3)(x)ltlog_(e)(x)ltlog_(2)(x)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Arrange in ascending order log_(2)(x),log_(3)(x),log_(e)(x),log_(10)(x) , if II. 0ltxlt1 .

(log_(e)2)(log_(x)625)=(log_(10)16)(log_(e)10)

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

if log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0 , then

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If log_(5)[log_(3)(log_(2)x)]=1 , then x is:

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

If log_(5)[log_(3)(log_(2)x)]=1 then x is