Home
Class 12
MATHS
Arrange in ascending order log(2)(x),log...

Arrange in ascending order
`log_(2)(x),log_(3)(x),log_(e)(x),log_(10)(x)`, if
II.`0ltxlt1`.

Text Solution

Verified by Experts

The correct Answer is:
which is ascending order.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Arrange in ascending order log_(2)(x),log_(3)(x),log_(e)(x),log_(10)(x) , if I. xgt1

(log_(e)2)(log_(x)625)=(log_(10)16)(log_(e)10)

if log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0 , then

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

The equation (log_(10)x+2)^(3)+(log_(10)x-1)^(3)=(2log_(10)x+1)3

Solve for x: log_(4) log_(3) log_(2) x = 0 .