Home
Class 12
MATHS
If x=log(2a)((bcd)/2), y=log(3b)((acd)/3...

If `x=log_(2a)((bcd)/2), y=log_(3b)((acd)/3), z=log_(4c)((abd)/4) and w=log_(5d)((abc)/5)` and `1/(x+1)+1/(y+1)+1/(z+1)+1/(w+1) = log_(abcd)N+1,` then value of `N/40` is

A

40

B

80

C

120

D

160

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

if =log_(a)(bc),y=log_(b)(ca) and z=log_(c)(ab) then (1)/(x+1)+(1)/(y+1)+(1)/(z+1)

If x=log_(a)(bc),y=log_(b)(ca),z=log_(c)(ab) then (1)/(x+1)+(1)/(y+1)+(1)/(z+1) is equal to

If (log_(2)a)/(2)=(log_(3)b)/(3)=(log_(4)c)/(4) and a^((1)/(2))b^((1)/(3))c^((1)/(4))=24 then

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz

If log_(4)10=x,log_(2)20=y and log_(5)8=z prove that (1)/(x+1)+(1)/(y+1)+(1)/(z+1)=1

If a^(x)=b^(y)=c^(z)=d^(w) then log_(a)(bcd)=

If x = log_(a) bc, y = log_(b) ca, z = log_(c) ab, then the value of (1)/(1 + x) + (1)/(1 + y) + (1)/(l + z) will be

if log_(a)x=(1)/(alpha),log_(b)x=(1)/(beta),log_(c)x=y then log_(abc)x