Home
Class 12
MATHS
Value of x, satisfying 6/5a^(loga(x).(lo...

Value of x, satisfying `6/5a^(log_a(x).(log_10(a).log_a(5)) -3^(log_10(x/10)) = 9^(log_100(x)+log_4(2))` is :

Text Solution

Verified by Experts

The correct Answer is:
`therefore` ` x=10^2` =100
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Value of x, satisfying (6)/(5)a^(log_(a)(x))*(log_(10)(a)*log_(a)(5))-3^(log_(10)((x)/(10)))=9^(log_(100)(x)+log_(4)(2)) is :

5^(log_(10)x)=50-x^(log_(10)5)

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

The value of x satisfying the equation 2^(log_2e^(In^5log 7^(log_10^(log_10(8x-3)))

The value of ' x 'satisfying the equation,4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83) is

Find the value of x satisfying (log_(10)(2^(x)+x-41)=x(1-log_(10)5)

(log_(10)100x)^(2)+(log_(10)10x)^(2)+log_(10)x<=14

4^(log_(10)x+1)-6^(log_(10)x)-2*3^(log_(10)x^(2)+2)=0. Find x

((log_(10)x)/(2))^(log_(10)^(2)x+log_(10)x^(2)-2)=log_(10)sqrt(x)