Home
Class 12
MATHS
Prove that: 2(sqrt((log)a4sqrt(a b)+(log...

Prove that: `2(sqrt((log)_a4sqrt(a b)+(log)_b4sqrt(a b))-(log)_a4sqrt(2/b)+(log)_b4sqrt(a/b))dotsqrt((log)_a b)={2ifbgeqa >1 2^((log)_a bif1

Text Solution

Verified by Experts

The correct Answer is:
`therefore` `2^(Psqrtlog_ab)` = `2^(log_ab` .
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Prove that: 2^(sqrt((log)_(a)4sqrt(ab)+(log)_(b)4sqrt(ab))-(log)_(a)4sqrt((b)/(a))+(log)_(b)4sqrt((pi)/(b)))sqrt((log)_(a)b)={2quad if b>=a>1 and 2^(log_(a)(b)) if 1

Prove that 2^{{sqrt(log_a 4sqrtab + log_b 4sqrtab)-sqrt((log_a)4sqrt(b/a)+log_b 4sqrt(a/b))}sqrt(log_a b))= { 2 , b gea gt1and 2^(log_b a) , 1 ltblta

Prove that a sqrt(log_(a)b)-b sqrt(log_(b)a)=0

log_(2)sqrt(x)+log_(2)sqrt(x)=4

4^(5log_(4)(sqrt(2)(3-sqrt(6)))-6log_(8)(sqrt(3)-sqrt(2)))

Solve: (log)_(3)(sqrt(x)+|sqrt(x)-1|)=(log)_(9)(4sqrt(x)-3+4|sqrt(x)-1)

log(((a^(-1)sqrt(3))^((1)/(3)))/(sqrt(b^(3)sqrt(a))))

(1)/(log_(sqrt(b))abc)+(1)/(log_(sqrt(ca))abc)+(1)/(log_(sqrt(ab))abc) has the value equal to

Evaluate: log_(a^(2))b-:log_(sqrt(a))(b)^(2)

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))