Home
Class 12
MATHS
The value of log((8-3sqrt7))(8+3sqrt7) i...

The value of `log_((8-3sqrt7))(8+3sqrt7)` is

A

-2

B

-1

C

0

D

Not defined

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{(8-3\sqrt{7})}(8+3\sqrt{7}) \), we can follow these steps: ### Step 1: Rationalize \( 8 + 3\sqrt{7} \) We can express \( 8 + 3\sqrt{7} \) in terms of \( 8 - 3\sqrt{7} \) by multiplying by its conjugate: \[ 8 + 3\sqrt{7} = \frac{(8 + 3\sqrt{7})(8 - 3\sqrt{7})}{8 - 3\sqrt{7}} = \frac{8^2 - (3\sqrt{7})^2}{8 - 3\sqrt{7}} \] ### Step 2: Calculate the numerator Calculating the numerator: \[ 8^2 = 64 \quad \text{and} \quad (3\sqrt{7})^2 = 9 \times 7 = 63 \] So, \[ 8^2 - (3\sqrt{7})^2 = 64 - 63 = 1 \] ### Step 3: Substitute back into the expression Now substituting back, we have: \[ 8 + 3\sqrt{7} = \frac{1}{8 - 3\sqrt{7}} \] ### Step 4: Rewrite the logarithm Now we can rewrite the logarithm: \[ \log_{(8-3\sqrt{7})}(8 + 3\sqrt{7}) = \log_{(8-3\sqrt{7})}\left(\frac{1}{8 - 3\sqrt{7}}\right) \] ### Step 5: Use logarithmic properties Using the property of logarithms, \( \log_b\left(\frac{1}{a}\right) = -\log_b(a) \): \[ \log_{(8-3\sqrt{7})}\left(\frac{1}{8 - 3\sqrt{7}}\right) = -\log_{(8-3\sqrt{7})}(8 - 3\sqrt{7}) \] ### Step 6: Evaluate the logarithm Since \( \log_{(8-3\sqrt{7})}(8 - 3\sqrt{7}) = 1 \) (because any number to the base of itself is 1): \[ -\log_{(8-3\sqrt{7})}(8 - 3\sqrt{7}) = -1 \] ### Final Answer Thus, the value of \( \log_{(8-3\sqrt{7})}(8+3\sqrt{7}) \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 3|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

log_(3sqrt(7))2401

The value of sqrt((3+sqrt(8))/(3-sqrt(8))) is

If A=log_(sqrt(3))(sqrt(3sqrt(3sqrt(3sqrt(3)))))* then the value of log_(sqrt(2))(8A+1) is equal to

the value of log_(7)[log_(7)sqrt(7sqrt(7sqrt(7)))] is

the value of log_(7)[log_(7)sqrt(7sqrt(7sqrt(7)))] is

the value of log_(7)[log_(7)sqrt(7sqrt(7sqrt(7)))] is

the value of log_(7)[log_(7)sqrt(7sqrt(7sqrt(7)))] is

The value of (1)/( sqrt(7) - sqrt(6)) - (1)/( sqrt(6) - sqrt(5) ) +(1)/( sqrt(5) -2) - (1)/( sqrt(8) - sqrt(7) ) +(1)/( 3- sqrt(8)) is

Find the value of 4^(5log_(4sqrt2)(3-sqrt6)-6log_8(sqrt3-sqrt2)) .