Home
Class 12
MATHS
If log(10)2=0.3010..., the number of dig...

If `log_(10)2=0.3010...,` the number of digits in the number `2000^(2000)` is

A

6601

B

6602

C

6603

D

6604

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of digits in the number \( 2000^{2000} \), we can follow these steps: ### Step 1: Express the number Let \( y = 2000^{2000} \). ### Step 2: Use logarithms to find the number of digits The number of digits \( d \) in a number \( n \) can be found using the formula: \[ d = \lfloor \log_{10} n \rfloor + 1 \] Thus, we need to calculate \( \log_{10} y \). ### Step 3: Apply logarithmic properties Using the property of logarithms, we can express \( \log_{10} y \) as: \[ \log_{10} y = \log_{10} (2000^{2000}) = 2000 \cdot \log_{10} (2000) \] ### Step 4: Break down \( \log_{10} (2000) \) We can express \( 2000 \) as: \[ 2000 = 2 \times 1000 = 2 \times 10^3 \] Thus, \[ \log_{10} (2000) = \log_{10} (2 \times 10^3) = \log_{10} 2 + \log_{10} (10^3) \] Using the property \( \log_{10} (10^3) = 3 \), we have: \[ \log_{10} (2000) = \log_{10} 2 + 3 \] ### Step 5: Substitute the known value We know that \( \log_{10} 2 = 0.3010 \). Therefore: \[ \log_{10} (2000) = 0.3010 + 3 = 3.3010 \] ### Step 6: Calculate \( \log_{10} y \) Now substituting back into our equation for \( \log_{10} y \): \[ \log_{10} y = 2000 \cdot \log_{10} (2000) = 2000 \cdot 3.3010 = 6602 \] ### Step 7: Find the number of digits Using the formula for the number of digits: \[ d = \lfloor \log_{10} y \rfloor + 1 = \lfloor 6602 \rfloor + 1 = 6602 + 1 = 6603 \] ### Final Answer Thus, the number of digits in the number \( 2000^{2000} \) is \( \boxed{6603} \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|9 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|12 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 3|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Given that log_(10)(2) = 0.3010... , number of digits in the number 2000^(2000) is

Given that log(2)=0.3010..., the number of digits in the number 2000^(2000) is 6601(b)6602 (c) 6603(d)6604

If log_(10)2= 0.3010 , then the number of digits in 16^(12) is

If the sum of digits of the number N=2000^(11)-2011 is S, then

If log_(10) 2=0.3010 then log_2 10=

ARIHANT MATHS-LOGARITHM AND THEIR PROPERTIES-Exercise (Single Option Correct Type Questions)
  1. If log(10)2=0.3010..., the number of digits in the number 2000^(2000)...

    Text Solution

    |

  2. There exists a positive number k such that log2x+ log4x+ log8x= logkx...

    Text Solution

    |

  3. If x1,x2 & x3 are the three real solutions of the equation x^(log10^2...

    Text Solution

    |

  4. If f(n)=prod(i=2)^(n-1)logi(i+1), the value of sum(k=1)^100f(2^k) equa...

    Text Solution

    |

  5. If log(3)27.logx7=log(27)x.log(7)3, the least value of x is

    Text Solution

    |

  6. If x=log5(1000) and y=log7(2058),then

    Text Solution

    |

  7. Solve for x log5 120 + (x - 3) - 2*log5 (1- 5^(x - 3)) = - log5 (0.2 ...

    Text Solution

    |

  8. If xn > x(n-1) > ..........> x3 > x1 > 1. then the value of log(x1) [...

    Text Solution

    |

  9. If (x(y+z-x))/(logx)=(y(z+x-y))/(logy)(z(x+y-z))/(logz),p rov et h a ...

    Text Solution

    |

  10. If y=a^(1/(1-logax)), z=a^(1/(1-logay)) then prove that x=a^(1/(1-loga...

    Text Solution

    |

  11. If (log)(0. 3)(x-1)<(log)(0. 09)(x-1), then x lies in the interval (2,...

    Text Solution

    |

  12. The value of a^x-b^y is (wherex=sqrt(logab)and y=sqrt(logba),agt0,bgt0...

    Text Solution

    |

  13. If x=1+log(a) bc, y=1+log(b) ca, z=1+log(c) ab, then (xyz)/(xy+yz+zx) ...

    Text Solution

    |

  14. The value of a^((logb(logbx))/(logb a)), is

    Text Solution

    |

  15. Find the value of 49^((1-log7(2)))+5^(-log5(4) is

    Text Solution

    |

  16. The number of real values of the parameter k for which the equation ("...

    Text Solution

    |

  17. The number of roots of the equation x^(logX(x+3)^2)=16 is

    Text Solution

    |

  18. The point on the graph y=log2log6{2^sqrt(2x+1)+4} whose y coordinate i...

    Text Solution

    |

  19. Given ,log2=0.301 and log3=0.477, then the number of digits before dec...

    Text Solution

    |

  20. The values of x, satisfying the equation for AA a > 0, 2log(x) a + lo...

    Text Solution

    |