Home
Class 12
MATHS
If xn > x(n-1) > ..........> x3 > x1 > 1...

If `x_n > x_(n-1) > ..........> x_3 > x_1 > 1.` then the value of `log_(x1) [log_(x2) {log_(x3).........log_(x4) (x_n)^(x_(r=i))}]`

A

0

B

1

C

2

D

undefined

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|9 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|12 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 3|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Solve log_(4)(x-1)= log_(2) (x-3) .

log_(2)(x+1)-log_(2)(3x-1)=2

Find the value of x,log_(4)(x+3)-log_(4)(x-1)=log_(4)8-2

(log_(4)x-2)*log_(4)x=(3)/(2)(log_(4)x-1)

The value of x,log_((1)/(2))x>=log_((1)/(3))x is

The number of solutions of log_(4)(x-1)=log_(2)(x-3)

the value of log x+log(1+(1)/(1+x))+log(1+(1)/(2+x))+............+log(1+(1)/(n-1+x))

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

(1)/(log_(2)x)+(1)/(log_(3)x)+......(1)/(log_(43)x)=(1)/(log_(43)!x)

The value of e^(log_(e)x+log_(sqrt(2))x)+log_(e^((1)/(3)))x+...+log_(e^((1)/(10)))x)=

ARIHANT MATHS-LOGARITHM AND THEIR PROPERTIES-Exercise (Single Option Correct Type Questions)
  1. If log(10)2=0.3010..., the number of digits in the number 2000^(2000)...

    Text Solution

    |

  2. There exists a positive number k such that log2x+ log4x+ log8x= logkx...

    Text Solution

    |

  3. If x1,x2 & x3 are the three real solutions of the equation x^(log10^2...

    Text Solution

    |

  4. If f(n)=prod(i=2)^(n-1)logi(i+1), the value of sum(k=1)^100f(2^k) equa...

    Text Solution

    |

  5. If log(3)27.logx7=log(27)x.log(7)3, the least value of x is

    Text Solution

    |

  6. If x=log5(1000) and y=log7(2058),then

    Text Solution

    |

  7. Solve for x log5 120 + (x - 3) - 2*log5 (1- 5^(x - 3)) = - log5 (0.2 ...

    Text Solution

    |

  8. If xn > x(n-1) > ..........> x3 > x1 > 1. then the value of log(x1) [...

    Text Solution

    |

  9. If (x(y+z-x))/(logx)=(y(z+x-y))/(logy)(z(x+y-z))/(logz),p rov et h a ...

    Text Solution

    |

  10. If y=a^(1/(1-logax)), z=a^(1/(1-logay)) then prove that x=a^(1/(1-loga...

    Text Solution

    |

  11. If (log)(0. 3)(x-1)<(log)(0. 09)(x-1), then x lies in the interval (2,...

    Text Solution

    |

  12. The value of a^x-b^y is (wherex=sqrt(logab)and y=sqrt(logba),agt0,bgt0...

    Text Solution

    |

  13. If x=1+log(a) bc, y=1+log(b) ca, z=1+log(c) ab, then (xyz)/(xy+yz+zx) ...

    Text Solution

    |

  14. The value of a^((logb(logbx))/(logb a)), is

    Text Solution

    |

  15. Find the value of 49^((1-log7(2)))+5^(-log5(4) is

    Text Solution

    |

  16. The number of real values of the parameter k for which the equation ("...

    Text Solution

    |

  17. The number of roots of the equation x^(logX(x+3)^2)=16 is

    Text Solution

    |

  18. The point on the graph y=log2log6{2^sqrt(2x+1)+4} whose y coordinate i...

    Text Solution

    |

  19. Given ,log2=0.301 and log3=0.477, then the number of digits before dec...

    Text Solution

    |

  20. The values of x, satisfying the equation for AA a > 0, 2log(x) a + lo...

    Text Solution

    |