Home
Class 12
MATHS
Statement-1(Assertion) and Statement-2 (...

Statement-1(Assertion) and Statement-2 (reason) Each of these question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below.
(a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1
Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1
(c) Statement -1 is true, Statement -2 is false
(d) Statement -1 is false, Statement -2 is true
Statement -1 `log_10xltlog_3xltlog_exltlog_2x` `(xgt0,xne1)`
Statment If `0ltxlt1`, then `log_xagtlog_xbimplies0ltaltb`.

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|64 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|2 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Statement-1(Assertion) and Statement-2 (reason) Each of these question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true Statement -1 The equation (logx)^2+logx^2-3=0 has two distinct solutions. Statement-2 logx^(2) =2logx.

Statement-1(Assertion) and Statement-2 (reason) Each of these question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true Statement -1 log_x3.log_(x//9)3=log_81(3) has a solution. Statement-2 Change of base in logarithms is possible .

Statement-1(Assertion) and Statement-2 (reason) Each of these question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true Statement -1 The equation 7^(log_7(x^3+1))-x^2=1 has two distinct real roots . Statement -2 a^(log_aN)=N , where agt0 , ane1 and Ngt0

Statement-1(Assertion) and Statement-2 (reason) Each of these question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true Statement -1 The equation x^(log_x(1-x)^2)=9 has two distinct real solutions. Statement -2 a^(log_ab)=b , when alt0,ane1,bgt0 .

Statement -1 (1/2)^7lt(1/3)^4 implies 7log(1/2)lt4log(1/3)implies7lt4 Statement-2 If axltay , where alt0 ,x, ygt0 , then xgty . (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true.

Let A be a 2""xx""2 matrix Statement 1 : a d j""(a d j""A)""=""A Statement 2 : |a d j""A|""=""|A| (1) Statement1 is true, Statement2 is true, Statement2 is a correct explanation for statement1 (2) Statement1 is true, Statement2 is true; Statement2 is not a correct explanation for statement1. (3) Statement1 is true, statement2 is false. (4) Statement1 is false, Statement2 is true

Statement-1: intsin^-1xdx+intsin^-1sqrt(1-x^2)dx=pi/2x+c Statement-2: sin^-1x+cos^-1x=pi/2 (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

Statement-1: The function F(x)=intsin^2xdx satisfies F(x+pi)=F(x),AAxinR ,Statement-2: sin^2(x+pi)=sin^2x (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

If A is 2 x 2 invertible matrix such that A=adjA-A^-1 Statement-I 2A^2+I=O(null matrix) Statement-II: 2|A|=1 (i) Statement-I is true, Statement-II is true; Statement-II is a correct explanation for Statement-I (2) Statement-I is true, Statement-II is true; Statement-II is not a correct explanation for Statement-I. 3) Statement-I is true, Statement-II is false. (4) Statement-I is false, Statement-II is true.

Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true Statement I: If (log)_(((log)_5x))5=2, t h n x=5^(sqrt(5)) Statement II: (log)_x a=b , if a >0, t h e n x=a^(1//b) a.A b. B c. C d. D