Home
Class 12
MATHS
If A=[{:(cosx,sinx,0),(-sinx,cosx,0),(0,...

If `A=[{:(cosx,sinx,0),(-sinx,cosx,0),(0,0,1):}]` =f(x), then `A^(-1)` is equal to

A

`f(-x)`

B

`f(x)`

C

`-f(x)`

D

`-f(-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) given by \[ A = \begin{pmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) The determinant of a \( 3 \times 3 \) matrix \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = \cos x \) - \( b = \sin x \) - \( c = 0 \) - \( d = -\sin x \) - \( e = \cos x \) - \( f = 0 \) - \( g = 0 \) - \( h = 0 \) - \( i = 1 \) Calculating the determinant: \[ \text{det}(A) = \cos x (\cos x \cdot 1 - 0 \cdot 0) - \sin x (-\sin x \cdot 1 - 0 \cdot 0) + 0 \] \[ = \cos^2 x + \sin^2 x \] Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \): \[ \text{det}(A) = 1 \] ### Step 2: Verify that the Inverse Exists Since \( \text{det}(A) \neq 0 \), the inverse \( A^{-1} \) exists. ### Step 3: Calculate the Adjoint of \( A \) The adjoint of a matrix is the transpose of its cofactor matrix. We will calculate the cofactor matrix first. #### Cofactor Matrix Calculation: 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det} \begin{pmatrix} \cos x & 0 \\ 0 & 1 \end{pmatrix} = \cos x \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det} \begin{pmatrix} -\sin x & 0 \\ 0 & 1 \end{pmatrix} = \sin x \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det} \begin{pmatrix} -\sin x & \cos x \\ 0 & 0 \end{pmatrix} = 0 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det} \begin{pmatrix} \sin x & 0 \\ 0 & 1 \end{pmatrix} = -\sin x \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det} \begin{pmatrix} \cos x & 0 \\ 0 & 1 \end{pmatrix} = \cos x \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det} \begin{pmatrix} \cos x & \sin x \\ 0 & 0 \end{pmatrix} = 0 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det} \begin{pmatrix} \sin x & 0 \\ \cos x & 0 \end{pmatrix} = 0 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det} \begin{pmatrix} \cos x & 0 \\ -\sin x & 0 \end{pmatrix} = 0 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det} \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} = \cos^2 x + \sin^2 x = 1 \] The cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Transpose the Cofactor Matrix to Get the Adjoint \[ \text{Adj}(A) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Calculate the Inverse of \( A \) Using the formula \( A^{-1} = \frac{\text{Adj}(A)}{\text{det}(A)} \): Since \( \text{det}(A) = 1 \): \[ A^{-1} = \text{Adj}(A) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 6: Relate \( A^{-1} \) to \( f(-x) \) From the original matrix \( A \): \[ A = \begin{pmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] We can see that \( A^{-1} \) can be expressed as: \[ A^{-1} = \begin{pmatrix} \cos(-x) & \sin(-x) & 0 \\ -\sin(-x) & \cos(-x) & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, we have: \[ A^{-1} = f(-x) \] ### Conclusion The inverse of the matrix \( A \) is: \[ A^{-1} = f(-x) \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 4|9 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If A=f(x)=[(cosx, sinx, 0),(-sinx, cosx,0),(0,0,1)], then the value of A^-1= (A) f(x) (B) -f(x) (C) f(-x) (D) -f(-x)

f(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] Statement 1: f(x) is inverse of f(-x) Statement 2: f(x).f(y) = f(x+y)

If F(x)=[{:(cosx,-sinx,0),(six,cosx,0),(0,0,1):}] , show that F(x).F(y)=F(x+y).

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] and G(x)=[[cosx,0,sinx],[0,1,0],[-sinx,0,cosx]], then [F(x)G(y)]^(-1) is equal to (A) F(-x)G(-y) (B) F(x-1)G(y-1) (C) G(-y)F(-x) (D) G(y^(-1))F(x^(-1))

If A=[(cosx,sinx),(sinx,-cosx)] and A("adj "A)=lamda[(1,0),(0,1)] , then lamda is equal to

If A=[(cosx,sinx),(-sinx,cosx)] and A.(adjA)=k[(1,0),(0,1)] then the value of k is