Home
Class 12
MATHS
Let A =[[1,2,2],[2,1,2],[2,2,1]], then...

Let `A =[[1,2,2],[2,1,2],[2,2,1]]`, then

A

`A^(2) - 4A-5I_(3)=O`

B

`A^(-1) = 1/5 (A-4I_(3))`

C

`A^(3)` is not invertible

D

`A^(2)` is invertible

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the matrix \( A \) and check the given options. ### Given Matrix: \[ A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself. \[ A^2 = A \cdot A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \] Calculating the elements of \( A^2 \): - First row: - \( (1 \cdot 1 + 2 \cdot 2 + 2 \cdot 2) = 1 + 4 + 4 = 9 \) - \( (1 \cdot 2 + 2 \cdot 1 + 2 \cdot 2) = 2 + 2 + 4 = 8 \) - \( (1 \cdot 2 + 2 \cdot 2 + 2 \cdot 1) = 2 + 4 + 2 = 8 \) - Second row: - \( (2 \cdot 1 + 1 \cdot 2 + 2 \cdot 2) = 2 + 2 + 4 = 8 \) - \( (2 \cdot 2 + 1 \cdot 1 + 2 \cdot 2) = 4 + 1 + 4 = 9 \) - \( (2 \cdot 2 + 1 \cdot 2 + 2 \cdot 1) = 4 + 2 + 2 = 8 \) - Third row: - \( (2 \cdot 1 + 2 \cdot 2 + 1 \cdot 2) = 2 + 4 + 2 = 8 \) - \( (2 \cdot 2 + 2 \cdot 1 + 1 \cdot 2) = 4 + 2 + 2 = 8 \) - \( (2 \cdot 2 + 2 \cdot 2 + 1 \cdot 1) = 4 + 4 + 1 = 9 \) Thus, we have: \[ A^2 = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} \] ### Step 2: Calculate \( A^2 - 4A - 5I_3 \) Next, we need to calculate \( A^2 - 4A - 5I_3 \). Where \( I_3 \) is the identity matrix of order 3: \[ I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] Calculating \( 4A \): \[ 4A = 4 \cdot \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix} \] Calculating \( 5I_3 \): \[ 5I_3 = 5 \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \] Now, we can compute \( A^2 - 4A - 5I_3 \): \[ A^2 - 4A - 5I_3 = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \] Calculating the result: \[ = \begin{bmatrix} 9 - 4 - 5 & 8 - 8 - 0 & 8 - 8 - 0 \\ 8 - 8 - 0 & 9 - 4 - 5 & 8 - 8 - 0 \\ 8 - 8 - 0 & 8 - 8 - 0 & 9 - 4 - 5 \end{bmatrix} \] \[ = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \] ### Step 3: Conclusion Since \( A^2 - 4A - 5I_3 = 0 \), we can conclude that the first option is correct. ### Step 4: Finding \( A^{-1} \) Using the equation derived from the previous step: \[ A^2 - 4A + 5I_3 = 0 \implies A^2 - 4A = -5I_3 \implies A(A - 4I_3) = -5I_3 \] Thus, \[ A^{-1} = -\frac{1}{5}(A - 4I_3) \] ### Step 5: Determinant of \( A \) To check if \( A^3 \) is invertible, we find the determinant of \( A \): \[ \text{det}(A) = 1(1 \cdot 1 - 2 \cdot 2) - 2(2 \cdot 1 - 2 \cdot 2) + 2(2 \cdot 2 - 1 \cdot 2) \] \[ = 1(1 - 4) - 2(2 - 4) + 2(4 - 2) \] \[ = 1(-3) - 2(-2) + 2(2) = -3 + 4 + 4 = 5 \] Since \( \text{det}(A) \neq 0 \), \( A \) is invertible, and consequently \( A^3 \) is also invertible. ### Step 6: Determinant of \( A^2 \) \[ \text{det}(A^2) = (\text{det}(A))^2 = 5^2 = 25 \neq 0 \] Thus, \( A^2 \) is also invertible. ### Final Answer The correct options are: 1. \( A^2 - 4A - 5I_3 = 0 \) 2. \( A^{-1} = \frac{1}{5}(A - 4I_3) \) 3. \( A^3 \) is invertible. 4. \( A^2 \) is invertible.

To solve the problem step by step, we will analyze the matrix \( A \) and check the given options. ### Given Matrix: \[ A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

" 2.Let "A=[[1,0,2],[2,0,1],[1,1,2]]," then "(det((A-I)^(3)-4A))/(5)" is "

Let A= [[1,0,2],[2,0,1],[1,1,2]] then det((A-I)^(3)-4A) is

Let A^(-1)=[[1,-1,2-1,2,12,1,-1]], then

Let A=[[2,1,3],[1,1,2],[3,1,1]] and A^(-1)=?

Let A=[[2,-2,-4],[-1,3,4],[1,-2,x]] and A^(2)=A . Then x = ?

Let a matrix A=[[2,3],[1,2]] then A^(-1) will be