Home
Class 12
MATHS
If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then...

If `A=[[3,-3,4],[2,-3,4],[0,-1,1]]` , then

A

`adj(adjA)=A`

B

`abs(adj(adj(A)))=1`

C

`abs(adj(A))=1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the adjoint of the adjoint of matrix \( A \) and verify if it equals \( A \). We will use the formula: \[ \text{adj}(\text{adj}(A)) = (\det A)^{n-2} A \] where \( n \) is the order of the matrix. For a \( 3 \times 3 \) matrix, \( n = 3 \). ### Step 1: Calculate the Determinant of Matrix \( A \) Given: \[ A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} \] We can calculate the determinant \( \det(A) \) using the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \det(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where: - \( a = 3, b = -3, c = 4 \) - \( d = 2, e = -3, f = 4 \) - \( g = 0, h = -1, i = 1 \) Calculating the determinant step by step: 1. Calculate \( ei - fh \): \[ (-3)(1) - (4)(-1) = -3 + 4 = 1 \] 2. Calculate \( di - fg \): \[ (2)(1) - (4)(0) = 2 - 0 = 2 \] 3. Calculate \( dh - eg \): \[ (2)(-1) - (-3)(0) = -2 - 0 = -2 \] Now substituting these values into the determinant formula: \[ \det(A) = 3(1) - (-3)(2) + 4(-2) \] \[ = 3 + 6 - 8 = 1 \] ### Step 2: Calculate \( \text{adj}(\text{adj}(A)) \) Using the formula: \[ \text{adj}(\text{adj}(A)) = (\det A)^{n-2} A \] Substituting \( \det A = 1 \) and \( n = 3 \): \[ \text{adj}(\text{adj}(A)) = (1)^{3-2} A = 1 \cdot A = A \] ### Conclusion Thus, we have shown that: \[ \text{adj}(\text{adj}(A)) = A \]

To solve the problem, we need to find the adjoint of the adjoint of matrix \( A \) and verify if it equals \( A \). We will use the formula: \[ \text{adj}(\text{adj}(A)) = (\det A)^{n-2} A \] where \( n \) is the order of the matrix. For a \( 3 \times 3 \) matrix, \( n = 3 \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If A=[(3,-3,4),(2,-3,4),(0,-1,1)]2-3 41 then show that A^-1=A^1.

If A =[{:(3,-3,4),(2,-3,4),(0,-1,1):}] and B is the adjoint of A, find the value of |AB+2I| ,where l is the identity matrix of order 3.

Find the inverse of each of the matrices given below : A=[(3,-3,4),(2,-3,4),(0,-1,1)]

If A=[[2,3],[0,1]] and B=[[3,4],[2,1]] ,then (AB)=

If A=[[1, 2, 3], [1, 3, 4], [3, 4, 3]] , then |A^(-1)|=

If A=[[3, -1, 4], [2, 3, 1]], B=[[1, 3, 4], [2, 1, 0], [-3, 2, 3]] find AB

If A=[[1, -1, 2], [0, 2, -3], [3, -2, 4]] , then |A^(-1)|=

If A=[[1,2,3],[0,-1,4],[3,1,5]] and B=[[2,-1,0],[1,4,3],[3,0,-2]], verify that (AB)^-1=B^-1A^-1.

If A=[[3, 4, 3], [1, 1, 0], [1, 4, 5]] , then

The adjoint matrix of [(3,-3,4),(2,-3,4),(0,-1,1)] is