Home
Class 12
MATHS
A=[1t a n x-t a n x1]a n df(x) is define...

`A=[1t a n x-t a n x1]a n df(x)` is defined as `f(x)=d e tdot(A^T A^(-1))` en the value of `(f(f(f(ff(x))))_` is `(ngeq2)` _________.

Text Solution

Verified by Experts

The correct Answer is:
2

`because A = [[1,tan x],[-tan x,1]]`
`therefore det A + [[1, tan x],[-tan x, 1]]= (1+ tan^(2)x) = ""^(2)x`
`rArr det A^(T) = det A = sec^(2) x `
Now, `f(x) = det (A^(T) A^(-1)) = (det A^(T)) (detA^(-1))`
`= ( det A^(T) ) (det A)^(-1) = (det(A^(T)))/(detA)= 1 `
`therefore underset("n times")(underbrace(lambda = f(f(f(f...f(x))))))=1 [because f(x) = 1]`
Hence, `2^(lambda)= 2^(1) = 2`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

A=[[1,tan x-tan x,1]] and f(x) is defined as f(x)=det.(A^(T)A^(-1)) en the value of f(f(f(f...f(x))) is (n>=2)

If A=[[1,tan x-tan x,1]] then let us define a function f(x)=det(A^(T)A^(-1)) then which of the following can be the value f(f(f(f.....f(x))))

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If f(x)=x^(n)&f'(1)=10, find the value of n.

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If f(x)=1+(1)/(x)int_(1)^(x)f(t)dt, then the value of (e^(-1)) is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is