Home
Class 12
MATHS
If the matrix A = [[lambda(1)^(2), lambd...

If the matrix `A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]]` is idempotent,
the value of `lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda_1^2 + \lambda_2^2 + \lambda_3^2 \) given that the matrix \( A \) is idempotent. An idempotent matrix satisfies the condition \( A^2 = A \). Given the matrix: \[ A = \begin{bmatrix} \lambda_1^2 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 \\ \lambda_2 \lambda_1 & \lambda_2^2 & \lambda_2 \lambda_3 \\ \lambda_3 \lambda_1 & \lambda_3 \lambda_2 & \lambda_3^2 \end{bmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we will multiply the matrix \( A \) by itself. \[ A^2 = A \cdot A \] Calculating the elements of \( A^2 \): - The element at position (1,1): \[ \lambda_1^2 \cdot \lambda_1^2 + \lambda_1 \lambda_2 \cdot \lambda_2 \lambda_1 + \lambda_1 \lambda_3 \cdot \lambda_3 \lambda_1 = \lambda_1^4 + \lambda_1^2 \lambda_2^2 + \lambda_1^2 \lambda_3^2 \] - The element at position (1,2): \[ \lambda_1^2 \cdot \lambda_1 \lambda_2 + \lambda_1 \lambda_2 \cdot \lambda_2^2 + \lambda_1 \lambda_3 \cdot \lambda_3 \lambda_2 = \lambda_1^2 \lambda_1 \lambda_2 + \lambda_1 \lambda_2^3 + \lambda_1 \lambda_2 \lambda_3^2 \] - The element at position (1,3): \[ \lambda_1^2 \cdot \lambda_1 \lambda_3 + \lambda_1 \lambda_2 \cdot \lambda_2 \lambda_3 + \lambda_1 \lambda_3 \cdot \lambda_3^2 = \lambda_1^2 \lambda_1 \lambda_3 + \lambda_1 \lambda_2 \lambda_2 \lambda_3 + \lambda_1 \lambda_3^3 \] Continuing this process for all elements of \( A^2 \), we will find: \[ A^2 = \begin{bmatrix} \lambda_1^4 + \lambda_1^2 \lambda_2^2 + \lambda_1^2 \lambda_3^2 & \lambda_1^2 \lambda_2 + \lambda_2^3 + \lambda_2 \lambda_3^2 & \lambda_1^2 \lambda_3 + \lambda_2 \lambda_3 + \lambda_3^3 \\ \text{(similar calculations for other rows)} \end{bmatrix} \] ### Step 2: Set \( A^2 = A \) Since \( A \) is idempotent, we set \( A^2 = A \). This gives us a system of equations based on the equality of corresponding elements in the matrices. For example, from the (1,1) position: \[ \lambda_1^4 + \lambda_1^2 \lambda_2^2 + \lambda_1^2 \lambda_3^2 = \lambda_1^2 \] Rearranging gives: \[ \lambda_1^4 + \lambda_1^2 (\lambda_2^2 + \lambda_3^2 - 1) = 0 \] ### Step 3: Solve the equations We can derive similar equations for all positions. The key observation is that if \( A \) is idempotent, the eigenvalues of \( A \) must be either 0 or 1. Thus, we can conclude that: \[ \lambda_1^2 + \lambda_2^2 + \lambda_3^2 = 1 \] ### Final Answer The value of \( \lambda_1^2 + \lambda_2^2 + \lambda_3^2 \) is: \[ \boxed{1} \]

To solve the problem, we need to find the value of \( \lambda_1^2 + \lambda_2^2 + \lambda_3^2 \) given that the matrix \( A \) is idempotent. An idempotent matrix satisfies the condition \( A^2 = A \). Given the matrix: \[ A = \begin{bmatrix} \lambda_1^2 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 \\ \lambda_2 \lambda_1 & \lambda_2^2 & \lambda_2 \lambda_3 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If |[lambda^(2)+3 lambda,lambda-1,lambda+3],[lambda+1,2-lambda,lambda-4],[lambda-3,lambda+4,3 lambda]|=p lambda^(4)+q lambda^(3)+r lambda^(2)+s lambda+t then t=

If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e=|[lambda^(2)-3,lambda-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e = |[lambda^(2)-3,-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

If |a_(i)| lt 1, lambda_(i) ge 0 for i=1,2,……n and lambda_(1)+lambda_(2)+…….+lambda_(n)=1 , then the value of |lambda_(1)a_(1)+lambda_(2)a_(2)+…….+lambda_(n)a_(n)| is

Two particle are moving perpendicular to each with de-Broglie wave length lambda_(1) and lambda_(2) . If they collide and stick then the de-Broglie wave length of system after collision is : (A) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (B) lambda = (lambda_(1))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (C) lambda = (sqrt(lambda_(1)^(2) + lambda_(2)^(2)))/(lambda_(2)) (D) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1) + lambda_(2)))

If |[lambda^(2),-lambda,2 lambda-1],[lambda+2,1-lambda,lambda],[lambda+2,lambda+1,-lambda]|=a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e Then values of a, b, c, d and e are.

If plambda^4+qlambda^3+rlambda^2+slambda+t=|(lambda^2+3lambda,lambda-1,lambda+3),(lambda+1,2-lambda,lambda-4),(lambda-3,lambda+4,3lambda)|, then value of t is

If tan 82(1)/(2^(@))=sqrt(lambda_(1))+sqrt(lambda_(2))+sqrt(lambda_(3))+2 then lambda_(1)+lambda_(2)+lambda_(3) is equal to

p(lambda)^4+q(lambda)^3+r(lambda)^2+s(lambda)+t = |((lambda^2 + 3lambda) , lambda -1 , lambda+3) , (lambda +1 , -2lambda , lambda-4 ) ,(lambda-3 , lambda+4 , 3lambda)| find t=?