Home
Class 12
MATHS
Let A = [[0, alpha],[0,0]] and(A+I)^(70)...

Let `A = [[0, alpha],[0,0]] and(A+I)^(70) - 70 A = [[a-1,b-1],[c-1,d-1]],` the
value of ` a + b + c + d ` is

Text Solution

Verified by Experts

The correct Answer is:
6

`because A = [[0 ,alpha],[0,0]]`
`therefore A^(2) = Acdot A = [[0 ,alpha],[0,0]][[0 ,alpha],[0,0]]=[[0 ,0],[0,0]]=0`
`rArr A^(2) = A^(3) = A^(4) = A^(5) = ...= 0`
Now, `(A + I) ^(70) = (I+A)^(70)`
`= I + ""^(70)C_(1) A + ""^(70)C_(2) A^(2) + ""^(70)C_(3) A^(3) +...+ ""^(70)C _(70)A^(70`
`= I + 70 A + 0 + 0 + ...=I+70A`
`rArr (A+I) ^(70) - 70 A = I = [[1,0],[0,1]]= [[a-1,b-1],[c-1, d-1]]` [given ]
`therefore a- 1 = 1, b-1 = 0, c-1 = 0, d-1=1`
`rArr a=2, b=1, c=, d=2`
Hence, `a + b + c + d = 6`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

Let A=[(0, alpha),(0,0)] and (A+I)^(50) -50A=[(a,b),(c,d)] . Then the value of a+b+c+d is

Let A=[(0,alpha),(0,0)] and (A+1)^(50)=50 A=[(a,b),(c,d)] Then the value of a+b+c+d is (A) 2 (B) 1 (C) 4 (D) none of these

If A=[[1,0],[2,1]] and A^(2012)=[[a,b],[c,d]] then find the values of a,b,c and d.

Let A=[(0,alpha),(0,0)] and (A+I)^(50)-50A=[(a,b),(c,d)] , find abc+abd+bcd+acd

If A=[(alpha,0),(1,1)] and B=[(9,a),(b,c)] and A^(2)=B , then the value of a + b + c is

Let A = [(1,0),(2,3)] and A^(n) = [(a, b),(c,d)] then lim_(n to oo) (b + c)/(a + d) =

If A= [[a,b],[c,d]] and I= [[1,0],[0,1]] then A^(2)-(a+d)A=

Let A=[(a,b),(c, d)]and B=[(alpha), (beta)] ne [(0), (0)] such that AB = B and a+d=2021 , then the value of ad-bc is equal to ___________ .

If a b c=0 , then find the value of {(x^a)^b}^c (a)1 (b) a (c)b (d) c

If A=[[a,b],[c,d]] and I=[[1,0],[0,1]] then A^2-(a+d)A-(bc-ad)I=