Home
Class 12
MATHS
If P= [[sqrt(3)/2, 1/2],[-1/2 , sqrt(3)/...

If `P= [[sqrt(3)/2, 1/2],[-1/2 , sqrt(3)/ 2]], A = [[1,1],[0,1]]and Q= PAP^(T)` , the ltbr. `P^(T)(Q^(2005)) P` equal to

A

`[[1,2005],[0,1]]`

B

`[[sqrt(3)//1,2005],[1,0]]`

C

`[[1, 2005],[sqrt(3)//2,1]]`

D

`[[1, sqrt(3)//2 ],[0, 2005]]`

Text Solution

Verified by Experts

The correct Answer is:
A

If `Q = PAP^(T) `
then `P^(T)Q=AP^(T) " "[because PP^(T)=I]`
` rArrP^(T) Q^(2005) P = AP^(T)Q^(2004)P`
`= A^(2) P^(T) Q ^(2003) P = A^(3) P^(T) Q^(2002) P `
`= A^(2004)P^(T)(QP)`
`= A^(2004)P^(T)(PA)" "[Q= PAP^(T) rArr QP= PA]`
`=A^(2005)`
`therefore A^(2005) = [[1,2005],[0,1]]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T), then P^(T)Q^(2015)P is

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T), then P^(T)Q^(2013)P=

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T) and X=P^(T)Q^(2005)P, then X equal to:

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]] and A=[[1,10,1]] and Q=PAP^(T) and x,=P^(T)Q^(2005)P then x is

If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," then" P^TQ^2015P , is

If P=[(sqrt(3)/2, 1/20),(-1/2,sqrt(3)/2)], A=[(1,1),(0,1)] and Q=PAP^T, then P^T Q^2005 P is: (A) [(1,2005),(0,1)] (B) [(1,2005),(2005,1)] (C) [(1,0),(2005,1)] (D) [(1,0),(0,1)]

If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(pi)(6)]], A = [[1,1],[0,1]]and Q = PAP^(T) then P^(T) Q^(2007) P is equal to

ARIHANT MATHS-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. A=[(1,0,0),(0,1,1),(0,2,4)]; I=[(1,0,0),(0,1,0),(0,0,1)],A^-1=1/6[A^2+...

    Text Solution

    |

  2. If P= [[sqrt(3)/2, 1/2],[-1/2 , sqrt(3)/ 2]], A = [[1,1],[0,1]]and Q= ...

    Text Solution

    |

  3. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  4. If A^(2) - A + I = 0 then A^(-1) is equal to

    Text Solution

    |

  5. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  6. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  7. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  8. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  9. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  10. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If A^2 = 25, the...

    Text Solution

    |

  11. Let Ad nB be 3xx3 matrtices of ral numbers, where A is symmetric, "B" ...

    Text Solution

    |

  12. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  13. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  14. Let A be the set of all 3 xx 3 symmetric matrices all of whose entrie...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  18. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  19. Let p be an odd prime number and Tp be the following set of 2 x 2 ma...

    Text Solution

    |

  20. Let p be an odd prime number and Tp, be the following set of 2 xx 2 ma...

    Text Solution

    |