Home
Class 12
MATHS
Consider the function f(x)={{:(x-[x]-(1)...

Consider the function `f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):}` where [.] denotes the fractional integral function and I is the set of integers. Then find `g(x)max.[x^(2),f(x),|x|},-2lexle2.`

A

`x^(2),-2le x le-1`

B

`1-x, -1 lt x le-(1)/(4)`

C

`(1)/(2)+x, -(1)/(4)lt x lt0`

D

`1+x, 0 le x lt1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|2 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|4 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|7 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|24 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

The domain of the function f(x)=log_([x+(1)/(2)])|x^(2)-x-6|* where [] denotes the greatest integer function,is

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

If f(x)={x+(1)/(2),x =0 then [(lim)_(x rarr0)f(x)]= (where [.] denotes the greatest integer function)

The function f(x)=[x]+1/2,x!inI is a/an (wher [.] denotes greatest integer function)

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is