Home
Class 12
PHYSICS
Value of sin(37^circ)cos(53^circ) is...

Value of `sin(37^circ)cos(53^circ)` is

A

`(9)/(25)`

B

`(12)/(25)`

C

`(16)/(25)`

D

`(3)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin(37^\circ) \cos(53^\circ) \), we can use some trigonometric identities and known values. ### Step-by-Step Solution: 1. **Identify the relationship between angles**: We know that \( \cos(53^\circ) \) can be expressed in terms of \( \sin(37^\circ) \) because \( 53^\circ = 90^\circ - 37^\circ \). Therefore, we can use the co-function identity: \[ \cos(53^\circ) = \sin(37^\circ) \] 2. **Use known values**: From trigonometric tables or standard results, we have: \[ \sin(37^\circ) \approx \frac{3}{5} \] and \[ \cos(53^\circ) = \sin(37^\circ) \approx \frac{3}{5} \] 3. **Substitute the values**: Now substituting the known values into the expression: \[ \sin(37^\circ) \cos(53^\circ) = \sin(37^\circ) \sin(37^\circ) = \left(\frac{3}{5}\right) \left(\frac{3}{5}\right) \] 4. **Calculate the product**: \[ \sin(37^\circ) \cos(53^\circ) = \frac{3}{5} \cdot \frac{3}{5} = \frac{9}{25} \] 5. **Final answer**: Therefore, the value of \( \sin(37^\circ) \cos(53^\circ) \) is: \[ \frac{9}{25} \]

To find the value of \( \sin(37^\circ) \cos(53^\circ) \), we can use some trigonometric identities and known values. ### Step-by-Step Solution: 1. **Identify the relationship between angles**: We know that \( \cos(53^\circ) \) can be expressed in terms of \( \sin(37^\circ) \) because \( 53^\circ = 90^\circ - 37^\circ \). Therefore, we can use the co-function identity: \[ \cos(53^\circ) = \sin(37^\circ) ...
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise Fill in the blanks type|26 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise Comprehension Type|31 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise Multiple Correct Answer Type|54 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS|Exercise Integer|5 Videos
  • CENTRE OF MASS CONVERSATION OF MOMENTUM AND COLLISION

    CENGAGE PHYSICS|Exercise Question Bank|38 Videos

Similar Questions

Explore conceptually related problems

The value of ((sin(78^circ +θ) - cos (12^circ +θ) +(tan^(2)70^circ - cosec^(2)20^circ))/ (sin 25^circ cos 65^circ + cos 25^circ sin 65^circ) is: ((sin(78^circ +θ) - cos (12^circ +θ) +(tan^(2)70^circ - cosec^(2)20^circ))/ (sin 25^circ cos 65^circ + cos 25^circ sin 65^circ) का मान है :

The value of (4 tan^(2) 30^circ + 1/4 sin^(2)90^circ + 1/8 cot^(2)60^circ + sin^(2)30^circ cos^(2)45^circ)/ (sin 60^circ cos30^circ - cos60^circ sin30^circ) is : (4 tan^(2) 30^circ + 1/4 sin^(2)90^circ + 1/8 cot^(2)60^circ + sin^(2)30^circ cos^(2)45^circ)/ (sin 60^circ cos30^circ - cos60^circ sin30^circ) का मान है:

The value of sin^(-1)(cos.(53pi)/(5)) is

The numerical value of sin 6^circ* sin 42^circ* sin 66^circ* sin 78^circ =_____

The numerical value of sin^(2)5^circ + sin^(2)10^circ + sin^(2)15^circ + . . . + sin^(2)90^circ=.........

The numerical value of sin 12^circ* sin 48^circ* sin 54^circ = _______.

The value of cosec(67^circ +θ) – sec(23^circ -θ) + cos15^circ cos35^circ cosec55^circ cos60^circ cosec75^circ is : cosec(67^circ +θ) – sec(23^circ -θ) + cos15^circ cos35^circ cosec55^circ cos60^circ cosec75^circ का मान है :

The value of is: (tan13^circ tan37^circ tan45^circ tan53^circ tan77^circ)/( 2cosec^(2) 60^circ(cos^(2) 60^circ−3cos60^circ+2))

The value of is: ((cos9^circ+sin81^circ)(sec9^circ+cosec81^circ))/(sin56^circ sec34^circ+cos25^circcosec65^circ) ((cos9^circ+sin81^circ)(sec9^circ+cosec81^circ))/(sin56^circ sec34^circ+cos25^circcosec65^circ) का मान है:

The value of (tan 29^circ cot61^circ - cosec^2 61^circ) + (cot^2 54^circ - sec^2 36^circ) + (sin^2 1^circ + sin^2 3^circ + sin^2 5^circ +......+ sin^2 89^circ) is: (tan 29^circ cot61^circ - cosec261^circ) + cot254^circ - sec236^circ +(sin 21^circ + sin 23^circ + sin 25^circ +......+ sin 289^circ) का मान है :