Home
Class 12
PHYSICS
If f(x)=sqrt(ax)+(a^2)/(sqrt(ax)), then ...

If `f(x)=sqrt(ax)+(a^2)/(sqrt(ax))`, then `f^`(a)=`

A

-1

B

1

C

0

D

a

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(a) \) for the function \( f(x) = \sqrt{ax} + \frac{a^2}{\sqrt{ax}} \), we will follow these steps: ### Step 1: Differentiate \( f(x) \) We start with the function: \[ f(x) = \sqrt{ax} + \frac{a^2}{\sqrt{ax}} \] We will differentiate \( f(x) \) with respect to \( x \). ### Step 2: Differentiate \( \sqrt{ax} \) Using the chain rule, the derivative of \( \sqrt{ax} \) is: \[ \frac{d}{dx}(\sqrt{ax}) = \frac{1}{2\sqrt{ax}} \cdot a = \frac{a}{2\sqrt{ax}} \] ### Step 3: Differentiate \( \frac{a^2}{\sqrt{ax}} \) Using the quotient rule, we differentiate \( \frac{a^2}{\sqrt{ax}} \): \[ \frac{d}{dx}\left(\frac{a^2}{\sqrt{ax}}\right) = a^2 \cdot \frac{d}{dx}(\sqrt{ax})^{-1} \] Using the chain rule: \[ \frac{d}{dx}(\sqrt{ax})^{-1} = -\frac{1}{(\sqrt{ax})^2} \cdot \frac{d}{dx}(\sqrt{ax}) = -\frac{1}{ax} \cdot \frac{a}{2\sqrt{ax}} = -\frac{a}{2ax\sqrt{ax}} \] Thus, \[ \frac{d}{dx}\left(\frac{a^2}{\sqrt{ax}}\right) = a^2 \cdot -\frac{a}{2ax\sqrt{ax}} = -\frac{a^2}{2x\sqrt{ax}} \] ### Step 4: Combine the derivatives Now we combine the derivatives: \[ f'(x) = \frac{a}{2\sqrt{ax}} - \frac{a^2}{2x\sqrt{ax}} \] ### Step 5: Simplify \( f'(x) \) We can factor out \( \frac{1}{2\sqrt{ax}} \): \[ f'(x) = \frac{1}{2\sqrt{ax}} \left( a - \frac{a^2}{x} \right) \] ### Step 6: Evaluate \( f'(a) \) Now we substitute \( x = a \): \[ f'(a) = \frac{1}{2\sqrt{a^2}} \left( a - \frac{a^2}{a} \right) = \frac{1}{2a} \left( a - a \right) = \frac{1}{2a} \cdot 0 = 0 \] ### Final Answer Thus, the value of \( f'(a) \) is: \[ f'(a) = 0 \]

To find \( f'(a) \) for the function \( f(x) = \sqrt{ax} + \frac{a^2}{\sqrt{ax}} \), we will follow these steps: ### Step 1: Differentiate \( f(x) \) We start with the function: \[ f(x) = \sqrt{ax} + \frac{a^2}{\sqrt{ax}} \] ...
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise subjective type|51 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise Comprehension Type|31 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS|Exercise Integer|5 Videos
  • CENTRE OF MASS CONVERSATION OF MOMENTUM AND COLLISION

    CENGAGE PHYSICS|Exercise Question Bank|38 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(sqrt(x)+(1)/(sqrt(x)))^(2)," then: "f'(2)=

If f(x)=sqrt(x+2sqrt(x))," then "f'(1)=

If f(x)=x(sqrt(x)-sqrt(x+1)) then f(x) is:

f(x)=sqrt((x-2)sqrt(x-1))/(sqrt(x-1)-1). x then f'(10) & f'(3/2)=

If f(x)=x sqrt(ax-x^(2)) for a>0, then f(x) is

(1)/(sqrt(ax-x^(2)))

int(sqrt(a)-sqrt(x))/(1-sqrt(ax))dx

If f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then the value of 10 f'(102^(+)) , is

if f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then f'(3)+f'(6)= (A) 0 (B) 1 (C) 2 (D) 1/2