Home
Class 12
PHYSICS
If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2)...

If `x=(1-t^2)/(1+t^2)` and `y=(2at)/(1+t^2)`, then `(dy)/(dx)=`

A

`(a(1-t^2))/(2t)`

B

`(a(t^2-1))/(2t)`

C

`(a(t^2+1))/(2t)`

D

`(a(t^2-1))/(t)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = \frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2at}{1 + t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = \frac{1 - t^2}{1 + t^2} \] Using the quotient rule for differentiation: \[ \frac{dx}{dt} = \frac{(1 + t^2)(0 - 2t) - (1 - t^2)(2t)}{(1 + t^2)^2} \] Calculating the numerator: \[ = -2t(1 + t^2) - 2t(1 - t^2) = -2t - 2t^3 - 2t + 2t^3 = -4t \] Thus, \[ \frac{dx}{dt} = \frac{-4t}{(1 + t^2)^2} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = \frac{2at}{1 + t^2} \] Using the quotient rule for differentiation: \[ \frac{dy}{dt} = \frac{(1 + t^2)(2a) - (2at)(2t)}{(1 + t^2)^2} \] Calculating the numerator: \[ = 2a(1 + t^2) - 4at^2 = 2a - 2at^2 \] Thus, \[ \frac{dy}{dt} = \frac{2a(1 - t^2)}{(1 + t^2)^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\frac{2a(1 - t^2)}{(1 + t^2)^2}}{\frac{-4t}{(1 + t^2)^2}} \] The \((1 + t^2)^2\) terms cancel out: \[ \frac{dy}{dx} = \frac{2a(1 - t^2)}{-4t} = \frac{a(1 - t^2)}{-2t} \] ### Final Answer \[ \frac{dy}{dx} = \frac{a(1 - t^2)}{-2t} \] ---

To find \(\frac{dy}{dx}\) given the parametric equations \(x = \frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2at}{1 + t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = \frac{1 - t^2}{1 + t^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise subjective type|51 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise Comprehension Type|31 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS|Exercise Integer|5 Videos
  • CENTRE OF MASS CONVERSATION OF MOMENTUM AND COLLISION

    CENGAGE PHYSICS|Exercise Question Bank|38 Videos

Similar Questions

Explore conceptually related problems

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0