Home
Class 12
PHYSICS
xsqrt(1+y)+ysqrt(1+x)=0, then (dy)/(dx)=...

`xsqrt(1+y)+ysqrt(1+x)=0`, then `(dy)/(dx)=`

A

`1+x`

B

`(1+x)^-2`

C

`-(1+x)^-1`

D

`-(1+x)^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x\sqrt{1+y} + y\sqrt{1+x} = 0 \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Rearranging the Equation Start with the given equation: \[ x\sqrt{1+y} + y\sqrt{1+x} = 0 \] Rearranging gives: \[ x\sqrt{1+y} = -y\sqrt{1+x} \] ### Step 2: Squaring Both Sides Square both sides to eliminate the square roots: \[ (x\sqrt{1+y})^2 = (-y\sqrt{1+x})^2 \] This simplifies to: \[ x^2(1+y) = y^2(1+x) \] ### Step 3: Expanding Both Sides Expanding both sides results in: \[ x^2 + x^2y = y^2 + y^2x \] ### Step 4: Rearranging the Terms Rearranging gives: \[ x^2 - y^2 + x^2y - y^2x = 0 \] Factoring out common terms: \[ (x^2 - y^2) + xy(x - y) = 0 \] Using the difference of squares: \[ (x - y)(x + y) + xy(x - y) = 0 \] Factoring out \( (x - y) \): \[ (x - y)(x + y + xy) = 0 \] ### Step 5: Finding Critical Points This gives us two cases: 1. \( x - y = 0 \) (which implies \( y = x \)) 2. \( x + y + xy = 0 \) ### Step 6: Finding \( \frac{dy}{dx} \) for \( y = x \) If \( y = x \), then: \[ \frac{dy}{dx} = 1 \] ### Step 7: Finding \( \frac{dy}{dx} \) for \( x + y + xy = 0 \) Now, we need to differentiate \( x + y + xy = 0 \) implicitly: \[ 1 + \frac{dy}{dx} + y + x\frac{dy}{dx} = 0 \] Rearranging gives: \[ (1 + x)\frac{dy}{dx} + y + 1 = 0 \] Solving for \( \frac{dy}{dx} \): \[ (1 + x)\frac{dy}{dx} = - (y + 1) \] \[ \frac{dy}{dx} = \frac{-(y + 1)}{1 + x} \] ### Step 8: Substituting \( y \) From \( x + y + xy = 0 \), we can express \( y \) in terms of \( x \): \[ y = -\frac{x}{1+x} \] Substituting this into the derivative: \[ \frac{dy}{dx} = \frac{-\left(-\frac{x}{1+x} + 1\right)}{1 + x} \] Simplifying gives: \[ \frac{dy}{dx} = \frac{1 - \frac{x}{1+x}}{1 + x} = \frac{\frac{1+x-x}{1+x}}{1+x} = \frac{1}{(1+x)^2} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{1}{1+x^2} \]

To solve the equation \( x\sqrt{1+y} + y\sqrt{1+x} = 0 \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Rearranging the Equation Start with the given equation: \[ x\sqrt{1+y} + y\sqrt{1+x} = 0 \] Rearranging gives: ...
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise subjective type|51 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise Comprehension Type|31 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS|Exercise Integer|5 Videos
  • CENTRE OF MASS CONVERSATION OF MOMENTUM AND COLLISION

    CENGAGE PHYSICS|Exercise Question Bank|38 Videos

Similar Questions

Explore conceptually related problems

If y= xsqrt(x) then (dy)/(dx) =?

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If x=ysqrt(1-y^(2)) , then (dy)/(dx)=

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(y+1)+y sqrt(x+1)=0 & x!=y, then (dy)/(dx)=

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

If xsqrt(y)+ysqrt(x)=1"then"(dy)/(dx) equals -