Home
Class 12
PHYSICS
If y=asinx+bcosx, then y^2+((dy)/(dx))^2...

If `y=asinx+bcosx`, then `y^2+((dy)/(dx))^2` is a

A

function of x

B

function of y

C

function x and y

D

constant

Text Solution

Verified by Experts

The correct Answer is:
D

`y=asinx+bcosx`
Differentiating with respect to x, we get
`(dy)/(dx)=acosx-bsinx`
`Now((dy)/(dx))^(2)=(acosx-bsinx)^(2)`
`=a^(2)cos^(2)x+b^(2)sin^(2)x-2absinxcosx`
and `y^(2)=(asinx+bcosx)^(2)`
`=a^(2)sin^(2)x+b^(2)cos^(2)x+2absinxcosx`
So, `((dy)/(dx))^(2)+y^(2)=a^(2)(sin^(2)x+cos^(2)x)+b^(2)(sin^(2)x+cos^(2)x)`
Hence `((dy)/(dx))^(2)+y^(2)=(a^(2)+b^(2))=` constant
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise subjective type|51 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise Comprehension Type|31 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS|Exercise Integer|5 Videos
  • CENTRE OF MASS CONVERSATION OF MOMENTUM AND COLLISION

    CENGAGE PHYSICS|Exercise Question Bank|38 Videos

Similar Questions

Explore conceptually related problems

y(dy)/(dx)=1+y^(2)

If y=e^(ax)sinbx, then (d^(2)y)/(dx^(2))-2a(dy)/(dx)+a^(2)y=

If y=2^(-x) then (dy)/(dx)=

"(dy)/(dx)=y^(2)+2y

If y=Asinx+Bcosx , prove that (d^(2)y)/(dx^(2))+y=0 .

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

(x+2y^(3))(dy)/(dx)=y

If y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=