Home
Class 12
MATHS
Let x1,""x2,"". . . . . . ,""xn be n obs...

Let `x_1,""x_2,"". . . . . . ,""x_n` be n observations, and let ` bar x` be their arithematic mean and `sigma^2` be their variance. Statement 1: Variance of `2x_1,""2x_2,"". . . . . . ,""2x_n""i s""4""sigma^2` . Statement 2: Arithmetic mean of `2x_1,""2x_2,"". . . . . . ,""2x_n""i s""4x` . (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

Promotional Banner

Topper's Solved these Questions

  • SETS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|2 Videos
  • STRAIGHT LINES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|15 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x)=|x^2|+|x^5|,x in R . Statement 1: f'(4)=0 Statement 2: f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5). (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

Let x_(1),x_(2),..,x_(n) be n observations, and let x be their arithmetic mean and sigma^(2) be the variance Statement 1 : Variance of 2x_(1),2x_(2),..,2x_(n) " is" 4sigma^(2) . Statement 2: Arithmetic mean 2x_(1),2x_(2),..,2x_(n) is 4x.

Let a, b R be such that the function f given by f(x)""=""ln""|x|""+""b x^2+""a x ,""x!=0 has extreme values at x""=""1 and x""=""2 . Statement 1: f has local maximum at x""=""1 and at x""=""2 . Statement 2: a""=1/2"and"b=(-1)/4 (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

Statement 1: The sum of the series 1""+""(1""+""2""+""4)""+""(4""+""6""+""9)""+""(9""+""12""+""16)""+"". . . . . . +""(361""+""380""+""400)""i s""8000 . Statement 2: sum_(k=1)^n(k^3-(k-1)^3)=n^3 for any natural number n. (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

Statement 1: The function f(x)=[[x]]-2[x-1]+[x+2] is discontinuous at all integers. Statement 2: [x] is discontinuous at all integral values of xdot Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

Let f(x)=x|x| and g(x)=s in x Statement 1 : gof is differentiable at x=0 and its derivative is continuous at that point Statement 2: gof is twice differentiable at x=0 (1) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for statement 1 (2) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1. (3) Statement 1 is true, statement 2 is false. (4) Statement 1 is false, Statement 2 is true

9, Let A be a 2 x 2 matrix with real entries. Let I be the 2 × 2 2identity matrix. Denote by tr (A), the sum of diagonal entries of A. Assume that A2 -1 nvo bud o malai Statement 1: If A 1 and A?-1, then det A =-1. Statement 2: If A 1 and A?-I, then tr (A)?0 A. Statement 1 is false, statement 2 is true. B. Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 . C. Statement 1 is true, statement 2 is true; statement 2 is nota correct explanation for statement 1. D. Statement 1 is true, statement 2 is false.

Statement 1: The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to pi/6 Statement 2: int_a^bf(x)dx=int_a^bf(a+b-x)dxdot Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

Statement 1: (lim)_(x->0)sin^(-1){x}\ does not exist (where {.} denotes fractional part function). Statement 2: {x} is discontinuous at x=0 (a)Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 (b)Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. (c)Statement 1 is true, statement 2 is false (d)Statement 1 is false, statement 2 is true

Statement 1: An equation of a common tangent to the parabola y^2=16sqrt(3)x and the ellipse 2x^2+""y^2=""4""i s""y""=""2x""+""2sqrt(3) . Statement 2: If the line y""=""m x""+(4sqrt(3))/m ,(m!=0) is a common tangent to the parabola y^2=""16sqrt(3)x and the ellipse 2x^2+""y^2=""4 , then m satisfies m^4+""2m^2=""24 . (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false