Home
Class 12
MATHS
If intf(x)dx=psi(x) , then intx^5f(x^3")...

If `intf(x)dx=psi(x)` , then `intx^5f(x^3")"dx` is equal to

A

`1/3x^3psi(x^3)-3intx^3psi(x^3)dx+C`

B

`1/3x^3psi(x^3)-intx^2psi(x^3)dx+C`

C

`1/3x^3psi(x^3)-intx^3psi(x^3)dx+C`

D

`1/3[x^3psi(x^3)-intx^2psi(x^3)dx]+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^5 f(x^3) \, dx \), we can use substitution. Let's go through the steps: ### Step 1: Substitution Let \( t = x^3 \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] ### Step 2: Express \( x^5 \) in terms of \( t \) Since \( t = x^3 \), we can express \( x \) in terms of \( t \): \[ x = t^{1/3} \quad \Rightarrow \quad x^5 = (t^{1/3})^5 = t^{5/3} \] ### Step 3: Substitute \( x^5 \) and \( dx \) into the integral Now, substituting \( x^5 \) and \( dx \) into the integral: \[ \int x^5 f(x^3) \, dx = \int t^{5/3} f(t) \cdot \frac{dt}{3x^2} \] We know \( x^2 = (t^{1/3})^2 = t^{2/3} \), so: \[ dx = \frac{dt}{3t^{2/3}} \] Thus, the integral becomes: \[ \int t^{5/3} f(t) \cdot \frac{dt}{3t^{2/3}} = \frac{1}{3} \int t^{5/3 - 2/3} f(t) \, dt = \frac{1}{3} \int t^{1} f(t) \, dt \] ### Step 4: Simplify the integral Now, we simplify the integral: \[ \frac{1}{3} \int t f(t) \, dt \] ### Step 5: Final Result Thus, we have: \[ \int x^5 f(x^3) \, dx = \frac{1}{3} \int t f(t) \, dt \]

To solve the integral \( \int x^5 f(x^3) \, dx \), we can use substitution. Let's go through the steps: ### Step 1: Substitution Let \( t = x^3 \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|3 Videos

Similar Questions

Explore conceptually related problems

If int f(x)dx=psi(x), then int x^(5)f(x^(3))dx

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

If intf(x)dx=g(x),then intx^(11)f(x^(6))dx is equal to

If intf(x)dx=g(x), then : intf^(-1)(x)dx=

JEE MAINS PREVIOUS YEAR-INTEGRALS-All Questions
  1. The solution for x of the equation int(sqrt(2))^x(dt)/(tsqrt(t^2-1))=p...

    Text Solution

    |

  2. Let F(x)""=""f(x)""+""f(1/x),"w h e r e"f(x)=intt^x(logt)/(1+t)dtdot ...

    Text Solution

    |

  3. int(dx)/(cosx+sqrt(3)sinx) equals: (1) 1/2logtan(x/2+pi/(12))+c (...

    Text Solution

    |

  4. The value of sqrt(2)int(sin"x"dx)/(sin(x-pi/4)) is: (1) x+log|cos(x-pi...

    Text Solution

    |

  5. Let I=int0^1(sin)/(sqrt(x))dx"and"J=int0^1(cosx)/(sqrt(x))dx Then w...

    Text Solution

    |

  6. Let p(x) be a function defined on R such that p '(x)""=""p '(1-x) , fo...

    Text Solution

    |

  7. The value of int0^1(8log(1+x))/(1+x^2)dx is: (1) pilog2 (2) pi/8lo...

    Text Solution

    |

  8. If g(x)""=int0xcos4t"dt" , then g(x""+pi) equals: (1) (g(x)/(g(pi) (2...

    Text Solution

    |

  9. If the integral int(5tanx)/(tanx-2)dx=x+a"ln"|sinx-2cosx|+k then a i...

    Text Solution

    |

  10. If intf(x)dx=psi(x) , then intx^5f(x^3")"dx is equal to

    Text Solution

    |

  11. The integral int(1+x-1/x)e^(x+1/x)dx is equal to (1) (x-1)e^(x+1/x)+C...

    Text Solution

    |

  12. The integral int0^pisqrt(1+4sin^2(x/2)-4sin(x/2)dx) equal (1) pi-4 ...

    Text Solution

    |

  13. The integral int2^4(logx^2)/(logx^2+log(36-12 x+x^2)dx is equal to:...

    Text Solution

    |

  14. The integral int(dx)/(x^4 - 1)^(1/4) equal:

    Text Solution

    |

  15. The integral int(2x^(12)+5x^9)/((x^5+x^3+1)^3)dx is equal to: (1) (-x^...

    Text Solution

    |

  16. Let In=inttan^n xdx ,(n >1) If I4+I6=atan^5x+b x^5+C , Where ...

    Text Solution

    |

  17. The Integral int(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to:

    Text Solution

    |