Home
Class 10
MATHS
-7y + y^(5)+3y^(3)-1/2 + 2y^(4)-y^(2) wr...

`-7y + y^(5)+3y^(3)-1/2 + 2y^(4)-y^(2)` write the polynomials in standard form.

Answer

Step by step text solution for -7y + y^(5)+3y^(3)-1/2 + 2y^(4)-y^(2) write the polynomials in standard form. by MATHS experts to help you in doubts & scoring excellent marks in Class 10 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRACTICE FOR SUBQUESTIONS

    UNIQUE PUBLICATION|Exercise 2 marks Questions|85 Videos
  • MODEL QUESTION PAPER

    UNIQUE PUBLICATION|Exercise Solve the following questions. (Any One)|3 Videos
  • PROBABILITY

    UNIQUE PUBLICATION|Exercise PROBLEM SET 5|23 Videos

Similar Questions

Explore conceptually related problems

3-2x^(2)+4x^(2)y+8y-(5)/(3)xy^(2) is a polynomial in two variables x and y.

x^(3)-7x^(2)+2x-3,2+(1)/(2)y-(3)/(2)y^(2)+4y^(3) are cubic polynomials.

Knowledge Check

  • HCF and LCM of two polynomials are (x+y) and 3x^(5) + 5x^(4)y + 2x^(3)y^(2) - 3x^(2)y^(3) - 5xy^(4) - 2y^(5) , respectively. If one of the polynomials is (x^(2) - y^(2)) . Then, the other polynomial is

    A
    `3x^(4) + 8x^(3)y + 10x^(2)y^(2) + 2y^(4)`
    B
    `3x^(4) + 8x^(3)y + 10x^(2) y^(2) + 7xy^(3) + 2y^(4)`
    C
    `3x^(4) + 8x^(3)y + 10x^(2)y^(2) + 7xy^(3) + 2y^(4)`
    D
    None of the above
  • HCF and LCM of two polymomials are (x+y) and 3x ^(5) + 5x ^(4) y + 2x ^(3) y ^(2) - 3x ^(2) y ^(3) - 5x y ^(4) - 2y ^(5), respectively. If one of the polynomials is (x ^(2) - y ^(2)), Then , the other polynomial is

    A
    `3x ^(4) + 8x ^(3) y+ 10 x^(2) y ^(2) + 2y ^(4)`
    B
    `3x ^(4) + 8x ^(3) y + 10 x ^(2) y ^(2) + 7 xy ^(3) + 2y ^(4)`
    C
    `3x ^(4) + 8x y ^(3) + 10 x ^(2)y ^(2) = 7xy ^(3) + 2y ^(4)`
    D
    None of the above
  • If 2x + 3y = (11)/(3) and 5x – 7y = (31)/(3), then the value of x and y are respectively is

    A
    `(107)/(87), (7)/(87)`
    B
    `(107)/(87), (-7)/(87)`
    C
    `(160)/(78) , (-7)/(87)`
    D
    `(170)/(87) , (-7)/(87)`
  • Similar Questions

    Explore conceptually related problems

    The HCF and LCM of two polynomials are (x+y) and (3x^5+5x^4y+2x^3y^2-3x^2y^3-5xy^4-2y^5) respectively. If on of the polynomials is (x^2-y^2) , then the other polynomial is

    3x^(4)-2x^(3)y^(2)+7xy^(3)-9x+5y+4 is a polynomials in x and y of degree 5, whereas (1)/(2)-3x+7x^(2)y-(3)/(4)x^(2)y^(2) is a polynomial of degree 4 is x and y

    Reduce the equation y(2y + 15) = 3(y^(2) + y + 8) to the standard form.

    ((y^(3)-3y^(2)+5y-1)/(y-1))

    Write the following in their standard form: y^(2)-y^(4)+3y-2y^(3)+5