Home
Class 12
MATHS
Let p=(lim)(xvec0+)(1+tan^2sqrt(x))^(1//...

Let `p=(lim)_(xvec0+)(1+tan^2sqrt(x))^(1//2x)` then `logp` is equal to: (1) 2 (2) 1 (3) `1/2` (4) `1/4`

Text Solution

Verified by Experts

`p = lim_(x->0^+) ( 1+ tan^2 sqrtx)^(1/(2x))`
`log p = lim_(x->0^+) log(1+ tan^2 sqrtx)^(1/(2x))`
`= lim_(x->0^+) 1/(2x) log(1+ tan^2 sqrtx)`
`= lim_(x->0^+) (Log(1+tan^2 sqrt x))/(2x)`
using L hospital rule
`lim_(x->0) (ax^2)/(bx^3) = (2ax)/(3bx^2)`
`= lim_(x->0^+) (1/(1+ tan^2 sqrtx) xx 2 tan sqrt xx sec^2 sqrt x xx 1/(2 sqrt x))/2`
`log p = lim_(x->0+) ( tan sqrt x xx sec^2 sqrt x)/ ( 2 sqrt x xx ( 1 + tan^2 sqrtx))`
...
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos
  • LINEAR INEQUALITIES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let p=lim_(x rarr0^(+))(1+tan^(2)sqrt(x))^((1)/(2x)) then log p is equal to ^(x)

(lim)_(xvec0)((1-cos2x)(3+cosx)/(xtan4x) is equal to: (1) 4 (2) 3 (3) 2 (4) 1/2

Let f(x) be a polynomial of degree four having extreme values at x""=""1 and x""=""2 . If (lim)_(xvec0)[1+(f(x))/(x^2)]=3 , then f(2) is equal to : (1) -8 (2) -4 (3) 0 (4) 4

lim_(x rarr0)(3sqrt(1+x^(2))-4sqrt(1-2x))/(x+x^(2)) is equal to

(lim)_(xvec0)((sqrt(1+x s in x)-sqrt(cos2x))/(tan^2(x//2))) is equal to 1/6 b. 6 c.3 d. 2

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

tan^(-1)((2x-1)/(10))+tan^(-1 )(1/(2x))=(pi)/(4) , then x is equal to