Home
Class 11
PHYSICS
Find the torque of the force vec(F)=(2ha...

Find the torque of the force `vec(F)=(2hat(i)-3hat(j)+4hat(k))` N acting at the point `vec(r )=(3hat(i)-2hat(j)+3hat(k))`m about the origion.

A

`6hat(i)-6hat(j)+12hat(k)`

B

`17hat(i)-6hat(j)-13hat(k)`

C

`-6hat(i)+6hat(j)-12hat(k)`

D

`-17hat(i)+6hat(j)+13hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
B

`vectau = vecrxx vecF = |(hati, hatj, hatk), (3, 2, 3), (2, -3, 4)|`
`=[(2xx4)-(3xx3)]hat(i)+[(2xx3)-(3xx4)]hat(j)+[(3xx-3)-(2xx2)]hat(k)= 17hat(i)-6hat(j)-13hat(k)`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    A2Z|Exercise Problems Based On Mixed Concepts|32 Videos
  • VECTORS

    A2Z|Exercise Assertion Reasoning|17 Videos
  • VECTORS

    A2Z|Exercise Dot Product|22 Videos
  • UNIT, DIMENSION AND ERROR ANALYSIS

    A2Z|Exercise Chapter Test|28 Videos
  • WAVES AND ACOUSTICS

    A2Z|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The torque of a force vec(F)=-2hat(i)+2hat(j)+3hat(k) acting on a point vec(r )=hat(i)-2hat(j)+hat(k) about origin will be

The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(r)=7hat(i)+3hat(j)+hat(k) is ______________?

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

Find the scalar and vector products of two vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)) and vec(b)(hat(i)-2hat(j)+3hat(k)) .

What is the magnitude of the moment of the couple consisting of the force vec(F)=3 hat(i)+2hat(j)-hat(k) acting through the point hat(i)-hat(j)+hat(k) and -vec(F) acting through the point 2hat(i)-3hat(j)-hat(k) ?

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

A force vec(F) = (2 hat(i) + 3 hat(j) + 4 hat(k)) N is applied to a point having position vector vec(r) = (3 hat(i) + 2 hat(j) + hat(k)) m. Find the torque due to the force about the axis passing through origin.

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

A2Z-VECTORS-Cross Product
  1. If vec(A)= 2hat(i)+4hat(j)-5hat(k) then the direction of cosins of the...

    Text Solution

    |

  2. The area of the parallelogram represented by the vectors vec(A)= 2hat(...

    Text Solution

    |

  3. Find the torque of the force vec(F)=(2hat(i)-3hat(j)+4hat(k)) N acting...

    Text Solution

    |

  4. If for two vectors vec(A) and vec(B), vec(A)xxvec(B)=0, the vectors

    Text Solution

    |

  5. The angle between Vectors (vec(A)xxvec(B)) and (vec(B)xxvec(A)) is

    Text Solution

    |

  6. What is the anlge between vec P xx vec Q and vec Q xx vec P is

    Text Solution

    |

  7. What is the unit vector perpendicular to the following Vector 2hat(i)+...

    Text Solution

    |

  8. The area of the parallelogram whose sides are represented by the vecto...

    Text Solution

    |

  9. The position of the particle is given by vec(r )=(vec(i)+2vec(j)-vec(k...

    Text Solution

    |

  10. If A=5 units,B=6 units and |vec(A)xxvec(B)|= 15 units, then what is th...

    Text Solution

    |

  11. The area of the parallelogram whose diagonals are vec(P)= 2hat(i)+3hat...

    Text Solution

    |

  12. Three vector vec(A),vec(B), vec(C ) satisfy the relation vec(A)*vec(B)...

    Text Solution

    |

  13. If a vector vec(A) is parallel to another vector vec(B) then the resul...

    Text Solution

    |

  14. If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), t...

    Text Solution

    |

  15. Which of the following is the unit vector perpendicular to vec(A) and ...

    Text Solution

    |

  16. The angle between the vector vec(A) and vec(B) is theta. Find the valu...

    Text Solution

    |

  17. The angle between vectors (vec(A)xxvec(B)) and (vec(B)xxvec(A)) is

    Text Solution

    |

  18. The angle between Vectors (vec(A)xxvec(B)) and (vec(B)xxvec(A)) is

    Text Solution

    |

  19. Two vector vec(A) and vec(B) have equal magnitudes. Then the vector ve...

    Text Solution

    |

  20. The value of (vec(A)+vec(B))xx(vec(A)-vec(B)) is

    Text Solution

    |