Home
Class 11
PHYSICS
The value of (vec(A)+vec(B))xx(vec(A)-ve...

The value of `(vec(A)+vec(B))xx(vec(A)-vec(B))` is

A

0

B

`A^(2)-B^(2)`

C

`vec(B)xxvec(A)`

D

`2(vec(B)xxvec(A))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \((\vec{A} + \vec{B}) \times (\vec{A} - \vec{B})\), we can follow these steps: ### Step 1: Expand the Expression We start by using the distributive property of the cross product: \[ (\vec{A} + \vec{B}) \times (\vec{A} - \vec{B}) = \vec{A} \times \vec{A} - \vec{A} \times \vec{B} + \vec{B} \times \vec{A} - \vec{B} \times \vec{B} \] ### Step 2: Simplify the Terms Next, we simplify each term: - The cross product of any vector with itself is zero: \[ \vec{A} \times \vec{A} = 0 \quad \text{and} \quad \vec{B} \times \vec{B} = 0 \] - Therefore, we can eliminate these terms: \[ 0 - \vec{A} \times \vec{B} + \vec{B} \times \vec{A} - 0 = -\vec{A} \times \vec{B} + \vec{B} \times \vec{A} \] ### Step 3: Use the Property of Cross Products We know that the cross product is anti-commutative, meaning: \[ \vec{B} \times \vec{A} = -(\vec{A} \times \vec{B}) \] Thus, we can substitute: \[ -\vec{A} \times \vec{B} - \vec{A} \times \vec{B} = -2(\vec{A} \times \vec{B}) \] ### Step 4: Final Result So, the final result is: \[ (\vec{A} + \vec{B}) \times (\vec{A} - \vec{B}) = -2(\vec{A} \times \vec{B}) \] ### Summary The value of \((\vec{A} + \vec{B}) \times (\vec{A} - \vec{B})\) is \(-2(\vec{A} \times \vec{B})\). ---

To solve the problem of finding the value of \((\vec{A} + \vec{B}) \times (\vec{A} - \vec{B})\), we can follow these steps: ### Step 1: Expand the Expression We start by using the distributive property of the cross product: \[ (\vec{A} + \vec{B}) \times (\vec{A} - \vec{B}) = \vec{A} \times \vec{A} - \vec{A} \times \vec{B} + \vec{B} \times \vec{A} - \vec{B} \times \vec{B} \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    A2Z|Exercise Problems Based On Mixed Concepts|32 Videos
  • VECTORS

    A2Z|Exercise Assertion Reasoning|17 Videos
  • VECTORS

    A2Z|Exercise Dot Product|22 Videos
  • UNIT, DIMENSION AND ERROR ANALYSIS

    A2Z|Exercise Chapter Test|28 Videos
  • WAVES AND ACOUSTICS

    A2Z|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If vec(A) = 2hati +3 hatj +hatk and vec(B) = 3hati + 2hatj + 4hatk , then find the value of (vec(A) +vec(B)) xx (vec(A) - vec(B))

Two vectors vec(A) and vec(B) have magnitudes 2 and 2sqrt(2) respectively. It is found that vec(A).vec(B) = |vec(A) xx vec(B)| , then the value of |(vec(A)+vec(B))/(vec(A)-vec(B))| will be :

What is the value of (vec(A) + vec(B)) .(vec(A) xx vec(B)) ?

If vec A = 2 hat i + 3 hat j + hat k and vec B = 3 hat i + 2 hat j + 4 hat k , then find the value of (vec A+vec B)xx(vec A-vec B) .

Show that (vec(A) - vec(B)) xx (vec(A) +vec(B)) = 2(vec(A) xx vec(B))

If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + vec(b)) xx (vec(a) xx vec(b)) is parallel to

If vec(a) and vec(b) are unit vectors, then what is the value of |vec(a) xx vec(b)|^(2) + (vec(a).vec(b))^(2) ?

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))

A2Z-VECTORS-Cross Product
  1. The angle between Vectors (vec(A)xxvec(B)) and (vec(B)xxvec(A)) is

    Text Solution

    |

  2. What is the anlge between vec P xx vec Q and vec Q xx vec P is

    Text Solution

    |

  3. What is the unit vector perpendicular to the following Vector 2hat(i)+...

    Text Solution

    |

  4. The area of the parallelogram whose sides are represented by the vecto...

    Text Solution

    |

  5. The position of the particle is given by vec(r )=(vec(i)+2vec(j)-vec(k...

    Text Solution

    |

  6. If A=5 units,B=6 units and |vec(A)xxvec(B)|= 15 units, then what is th...

    Text Solution

    |

  7. The area of the parallelogram whose diagonals are vec(P)= 2hat(i)+3hat...

    Text Solution

    |

  8. Three vector vec(A),vec(B), vec(C ) satisfy the relation vec(A)*vec(B)...

    Text Solution

    |

  9. If a vector vec(A) is parallel to another vector vec(B) then the resul...

    Text Solution

    |

  10. If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), t...

    Text Solution

    |

  11. Which of the following is the unit vector perpendicular to vec(A) and ...

    Text Solution

    |

  12. The angle between the vector vec(A) and vec(B) is theta. Find the valu...

    Text Solution

    |

  13. The angle between vectors (vec(A)xxvec(B)) and (vec(B)xxvec(A)) is

    Text Solution

    |

  14. The angle between Vectors (vec(A)xxvec(B)) and (vec(B)xxvec(A)) is

    Text Solution

    |

  15. Two vector vec(A) and vec(B) have equal magnitudes. Then the vector ve...

    Text Solution

    |

  16. The value of (vec(A)+vec(B))xx(vec(A)-vec(B)) is

    Text Solution

    |

  17. Two adjacent sides of a parallelogram are respectively by the two vect...

    Text Solution

    |

  18. The vector from origion to the point A and B are vec(A)=3hat(i)-6hat(j...

    Text Solution

    |

  19. What is the unit vector perpendicular to the following Vector 2hat(i)+...

    Text Solution

    |

  20. If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B), then the value of |vec(A)+ve...

    Text Solution

    |