Home
Class 11
PHYSICS
If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)...

If `|vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)`, then the value of `|vec(A)+vec(B)|` is

A

`(A^(2)+B^(2)+(AB)/(sqrt(3)))^(1//2)`

B

`A+B`

C

`(A^(2)+B^(2)+sqrt(3)AB)^(1//2)`

D

`(A^(2)+B^(2)+AB)^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ |\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B} \] ### Step 1: Express the cross product and dot product The magnitude of the cross product \(|\vec{A} \times \vec{B}|\) can be expressed as: \[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \] where \(\theta\) is the angle between the vectors \(\vec{A}\) and \(\vec{B}\). The dot product \(\vec{A} \cdot \vec{B}\) can be expressed as: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \] ### Step 2: Substitute into the equation Substituting these expressions into the given equation, we have: \[ |\vec{A}| |\vec{B}| \sin \theta = \sqrt{3} |\vec{A}| |\vec{B}| \cos \theta \] ### Step 3: Cancel out common terms Assuming \(|\vec{A}| \neq 0\) and \(|\vec{B}| \neq 0\), we can divide both sides by \(|\vec{A}| |\vec{B}|\): \[ \sin \theta = \sqrt{3} \cos \theta \] ### Step 4: Divide both sides by \(\cos \theta\) Dividing both sides by \(\cos \theta\) gives: \[ \tan \theta = \sqrt{3} \] ### Step 5: Find the angle \(\theta\) The angle \(\theta\) that satisfies \(\tan \theta = \sqrt{3}\) is: \[ \theta = 60^\circ \] ### Step 6: Calculate the magnitude of \(|\vec{A} + \vec{B}|\) The magnitude of the sum of two vectors can be calculated using the formula: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta} \] Substituting \(\theta = 60^\circ\) and \(\cos 60^\circ = \frac{1}{2}\): \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cdot \frac{1}{2}} \] ### Step 7: Simplify the expression This simplifies to: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + |\vec{A}| |\vec{B}|} \] ### Final Result Thus, the value of \(|\vec{A} + \vec{B}|\) is: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + |\vec{A}| |\vec{B}|} \] ---

To solve the problem, we start with the given equation: \[ |\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B} \] ### Step 1: Express the cross product and dot product The magnitude of the cross product \(|\vec{A} \times \vec{B}|\) can be expressed as: ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    A2Z|Exercise Problems Based On Mixed Concepts|32 Videos
  • VECTORS

    A2Z|Exercise Assertion Reasoning|17 Videos
  • VECTORS

    A2Z|Exercise Dot Product|22 Videos
  • UNIT, DIMENSION AND ERROR ANALYSIS

    A2Z|Exercise Chapter Test|28 Videos
  • WAVES AND ACOUSTICS

    A2Z|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

vec(A) and vec(B) are two Vectors and theta is the angle between them, if |vec(A)xxvec(B)|= sqrt(3)(vec(A).vec(B)) the value of theta is

If |vec(a)|=10,|vec(b)|=2 and vec(a)*vec(b)=12 , then the value of the |vec(a)xxvec(b)| is

If |vec(c)|=10, |vec(b)|=2 and vec(a)*vec(b)=12 , then what is the value of |vec(a)xxvec(b)| ?

Assertion: vec(A)xxvec(B) is perpendicualr to both vec(A)-vec(B) as well as vec(A)-vec(B) Reason: vec(A)xxvec(B) as well as vec(A)-vec(B) lie in the plane containing vec(A) and vec(B) , but vec(A)xxvec(B) lies perpendicular to the plane containing vec(A) and vec(B) .

Let vec(a), vec(b), vec(c) be non-coplanar vectors and vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]), vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]), vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)]) . What is the value of (vec(a)-vec(b)-vec(c)).vec(p)+(vec(b)-vec(c)-vec(a)).vec(q)+(vec(c)-vec(a)-vec(b)).vec(r) ?

Assertion: If theta be the angle between vec(A) and vec(B) , then tan theta= (vec(A)xxvec(B))/(vec(A).vec(B)) Reason: vec(A)xxvec(B) is perpendicualr to vec(A).vec(B) .

If |vec a|=2|vec b|=5 and |vec a xxvec b|=8, then find the value of vec a.vec b.

The value of (vec(A)+vec(B)).(vec(A)xxvec(B)) is :-

Let vec a and vec b be unit vectors such that |vec a+vec b|=sqrt(3). Then find the value of (2vec a+5vec b)*(3vec a+vec b+vec a xxvec b)

If (3 vec(a)-vec(b))xx(vec(a) + 3 vec(b)) =k vec(a)xxvec(b) then what is the value of k ?

A2Z-VECTORS-Cross Product
  1. The angle between Vectors (vec(A)xxvec(B)) and (vec(B)xxvec(A)) is

    Text Solution

    |

  2. What is the anlge between vec P xx vec Q and vec Q xx vec P is

    Text Solution

    |

  3. What is the unit vector perpendicular to the following Vector 2hat(i)+...

    Text Solution

    |

  4. The area of the parallelogram whose sides are represented by the vecto...

    Text Solution

    |

  5. The position of the particle is given by vec(r )=(vec(i)+2vec(j)-vec(k...

    Text Solution

    |

  6. If A=5 units,B=6 units and |vec(A)xxvec(B)|= 15 units, then what is th...

    Text Solution

    |

  7. The area of the parallelogram whose diagonals are vec(P)= 2hat(i)+3hat...

    Text Solution

    |

  8. Three vector vec(A),vec(B), vec(C ) satisfy the relation vec(A)*vec(B)...

    Text Solution

    |

  9. If a vector vec(A) is parallel to another vector vec(B) then the resul...

    Text Solution

    |

  10. If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), t...

    Text Solution

    |

  11. Which of the following is the unit vector perpendicular to vec(A) and ...

    Text Solution

    |

  12. The angle between the vector vec(A) and vec(B) is theta. Find the valu...

    Text Solution

    |

  13. The angle between vectors (vec(A)xxvec(B)) and (vec(B)xxvec(A)) is

    Text Solution

    |

  14. The angle between Vectors (vec(A)xxvec(B)) and (vec(B)xxvec(A)) is

    Text Solution

    |

  15. Two vector vec(A) and vec(B) have equal magnitudes. Then the vector ve...

    Text Solution

    |

  16. The value of (vec(A)+vec(B))xx(vec(A)-vec(B)) is

    Text Solution

    |

  17. Two adjacent sides of a parallelogram are respectively by the two vect...

    Text Solution

    |

  18. The vector from origion to the point A and B are vec(A)=3hat(i)-6hat(j...

    Text Solution

    |

  19. What is the unit vector perpendicular to the following Vector 2hat(i)+...

    Text Solution

    |

  20. If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B), then the value of |vec(A)+ve...

    Text Solution

    |