Home
Class 11
PHYSICS
vec A , vec B and vec C are three non-co...

` vec A , vec B and vec C` are three non-collinear, non co-planar vectors. What can you say about direction of ` vec A xx vec (B xx vec C`) ?

Text Solution

Verified by Experts

` (vec Bxx vec C)` will act perpecndcular to the plane constaining ` vec B and vec C` and is derected as given by right hand rule. `(vec A xx (vec B xx vec C)` will lie in the plane of `vec B and vec C` and is perpwndicular to vector `vec A`.
Promotional Banner

Topper's Solved these Questions

  • KINEMATICS

    PRADEEP|Exercise 1 Short answer|25 Videos
  • KINEMATICS

    PRADEEP|Exercise 2 Short answer|26 Videos
  • KINEMATICS

    PRADEEP|Exercise 5 Very short|5 Videos
  • GRAVIATION

    PRADEEP|Exercise Assertion-Reason Type Questions|19 Videos
  • LAWS OF MOTION

    PRADEEP|Exercise Assertion- Reason Type Questions|17 Videos

Similar Questions

Explore conceptually related problems

If vec a, vec b, vec c are three non-coplanar, non-zero vectors, then the value of (vec a * vec a) vec b xxvec c + (vec a * vec b) vec c xxvec a + (vec a * vec c) vec a xxvec b

If vec a,vec b,vec c be any three non-zero non coplanar vectors and vectors vec p=(vec b xx vec c)/(vec a.vec b xx vec c),vec q=(vec c xx vec a)/(vec a.vec b xx vec c) vec r=(vec a xx vec b)/(veca.vec b xx vec c), then [vec p vec q vec r] equals -

If vec a,vec b, and vec c are three non-coplanar vectors,then find the value of (vec a*(vec b xxvec c))/(vec b*(vec c xxvec a))+(vec b*(vec c xxvec a))/(vec c*(vec a xxvec b))+(vec c*(vec b xxvec a))/(vec a xxvec c))

If vec a,vec b and vec c are three non co planar vectors,then the length of projection of vector a in the plane of the vectors b and c may be given by

If vec a, vec b, vec c are three non-coplanar vectors represented by concurrent edges of a parallelopiped of volume 4, (vec a + vec b) + (vec bxx vec c) + (vec b + vec c). ( vec c xx vec a) + (vec c + vec a). (vec axx vec b) is equal to

Solve the following equation for the vector vec p; vec p xx vec a+(vec p. vec b)vec c=vec b xx vec c where vec a ,vec b,vec c are non zero non coplanar vectors and vec a is neither perpendicular to vec b non to vec c hence show that (vec p xx vec a+([vec a vec b vec c])/(vec a*vec c) vec c) is perpendicular vec b-vec c.

If veca, vecb, vec c are three non coplanar vectors , then the value of (vec a.(vec b xx vec c) )/((vec c xx vec a).vec b) + ( vecb.(vec a xx vec c ))/(vec c.(vec a xx vec b)) is

If vec( a) , vec( b) , vec( c ) are non coplanar non-zero vectors such that vec( b) xxvec( c) = vec( a ), vec( a ) xx vec( b) =vec( c ) and vec( c ) xx vec( a ) = vec ( b ) , then which of the following is not true

If vec a , vec b , vec c are three non-zero vectors (no two of which are collinear), such that the pairs of vectors (vec a + vec b, vec c) and (vec b + vec c , vec a) are collinear, then vec a + vec b + vec c =

vec a, vec b, vec c are non-coplanar vectors, express vec a xx (vec b xxvec c) as a linear combination of vec a, vec b, vec c