Home
Class 11
PHYSICS
For tow vectros vec A and vec B | ve...

For tow vectros ` vec A` and vec B`
` | vec A + vec B| = | vec A- vec B|` is always true when.

A

(a) `| vec A| =| vec B| != 0`

B

(b) (b) ` vec A_|_ vec B`

C

(c ) |vec A| = | vec B| != ` and vec A and vec B` are parallel or antiparallel

D

(d) When eigher `| vec A| or | vec B|` is zero.

Text Solution

Verified by Experts

The correct Answer is:
B, D

When ` vec A` is prependicular fo ` vec B` then ` | vec A= vec B| = sqrt( A^2 +b^2 + 2 AB cos 90^@) = sqrt( A^2 + B^2)`
` | vec A- vec B| = sqert A^2 +B^@ - 2 AB cos 90^@ ) = sqrt (A^2 +B^2)`
when ` | vec A| =0 `or ` | vec B| =0 ` then `| vec A + vec B| = | vec A- vec B|`.
Promotional Banner

Topper's Solved these Questions

  • KINEMATICS

    PRADEEP|Exercise 3 NCERT multiple|161 Videos
  • KINEMATICS

    PRADEEP|Exercise 4 NCERT multiple Choice|10 Videos
  • KINEMATICS

    PRADEEP|Exercise 1 NCERT multiple|11 Videos
  • GRAVIATION

    PRADEEP|Exercise Assertion-Reason Type Questions|19 Videos
  • LAWS OF MOTION

    PRADEEP|Exercise Assertion- Reason Type Questions|17 Videos

Similar Questions

Explore conceptually related problems

For any two vectors vec a and vec b write when |vec a+vec b|=|vec a-vec b| holds.

If vec A + vec B = vec A -vec B , then vec B is a

if | vec a | = | vec b | = | vec a + vec b | = 1 then | vec a-vec b |

For any two vectors vec a and vec b, we always have |vec a+ vec b|<=|vec a|+|vec b|

If vec A + vec B = vec A- vec B , then vec B is a…………………………….. .

For non-zero vectors vec a and vec b if |vec a+vec b|<|vec a-vec b|, then vec a and vec b are

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

Non-zero vectors vec a, vec b and vec c satisfy vec a * vec b = 0, (vec b-vec a) (vec b + vec c) = 0 and 2 | vec b + vec c | = | vec b -vec a | If vec a = muvec b + 4vec c then possible value of mu are