Home
Class 12
MATHS
Solve for x, |{:(4x,6x+2,8x+1),(6x+2,9...

Solve for x,
`|{:(4x,6x+2,8x+1),(6x+2,9x+3,12x),(8x+1,12x,16x+2):}|`=0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given by \[ \begin{vmatrix} 4x & 6x + 2 & 8x + 1 \\ 6x + 2 & 9x + 3 & 12x \\ 8x + 1 & 12x & 16x + 2 \end{vmatrix} = 0, \] we will perform a series of operations on the determinant to simplify it. ### Step 1: Apply Column Operations We start by performing the operation \( C_3 \leftarrow C_3 - 2C_1 \): \[ C_3 = (8x + 1) - 2(4x) = 8x + 1 - 8x = 1, \] \[ C_3 = (12x) - 2(6x + 2) = 12x - 12x - 4 = -4, \] \[ C_3 = (16x + 2) - 2(8x + 1) = 16x + 2 - 16x - 2 = 0. \] Thus, the determinant simplifies to: \[ \begin{vmatrix} 4x & 6x + 2 & 1 \\ 6x + 2 & 9x + 3 & -4 \\ 8x + 1 & 12x & 0 \end{vmatrix} = 0. \] ### Step 2: Apply Another Column Operation Next, we perform the operation \( C_2 \leftarrow C_2 - 3C_1 \): \[ C_2 = (6x + 2) - 3(4x) = 6x + 2 - 12x = -6x + 2, \] \[ C_2 = (9x + 3) - 3(6x + 2) = 9x + 3 - 18x - 6 = -9x - 3. \] The determinant now looks like this: \[ \begin{vmatrix} 4x & -6x + 2 & 1 \\ 6x + 2 & -9x - 3 & -4 \\ 8x + 1 & 12x & 0 \end{vmatrix} = 0. \] ### Step 3: Simplify Further Now we can perform row operations to simplify the determinant. We can perform \( R_2 \leftarrow R_2 + 4R_1 \): \[ R_2 = (6x + 2) + 4(4x) = 6x + 2 + 16x = 22x + 2, \] \[ R_2 = (-9x - 3) + 4(-6x + 2) = -9x - 3 - 24x + 8 = -33x + 5. \] The determinant now is: \[ \begin{vmatrix} 4x & -6x + 2 & 1 \\ 22x + 2 & -33x + 5 & -4 \\ 8x + 1 & 12x & 0 \end{vmatrix} = 0. \] ### Step 4: Calculate the Determinant Now we can expand the determinant. The determinant can be calculated using the first row: \[ D = 4x \begin{vmatrix} -33x + 5 & -4 \\ 12x & 0 \end{vmatrix} - (-6x + 2) \begin{vmatrix} 22x + 2 & -4 \\ 8x + 1 & 0 \end{vmatrix} + 1 \begin{vmatrix} 22x + 2 & -33x + 5 \\ 8x + 1 & 12x \end{vmatrix}. \] Calculating each of these 2x2 determinants and setting \( D = 0 \) will lead us to the value of \( x \). ### Step 5: Solve the Resulting Equation After calculating the determinants and simplifying, we will arrive at a polynomial equation in \( x \). Solving this polynomial will yield the value of \( x \). ### Final Result After simplifying and solving, we find: \[ x = -\frac{11}{97}. \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Single Option Correct Type Questions|2 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If det[[4x,6x+2,8x+16x+2,9x+3,12x8x+1,12x,16x+2]]=0, then x is

Let D(x)=|{:(x^2+4x-3, 2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-16x+1, 16x-6, 104):}|=alphax^3+betax^2 + gammax+delta then :

Solve for x,det[[x,-6,-12,-3x,x-3-3,2x,x+2]]=0

Find value of |{:(2, 3, 4), (5, 6, 8), (6x, 9x, 12x):}|

Solve for x: x^(2)+6x-(a^(2)+2a-8)=0

If Delta(x)=|{:(x^2+4x-3,2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-6x+1,16x-6,104):}|=ax^3+bx^2+cx+d then

Solve for xdet[[x-2,2x-3,3xx-4x-4,2x-9,3x-16x-8,2x-27,3x-64]]=0

Solve 3x^(4) -8x^(3) -6x^(2) + 8x + 3 = 0 .

ARIHANT MATHS-DETERMINANTS -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Solve for x, |{:(4x,6x+2,8x+1),(6x+2,9x+3,12x),(8x+1,12x,16x+2):}|=0

    Text Solution

    |

  2. If a^(2)+b^(2)+c^(2)=-2 and f(x)= |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x...

    Text Solution

    |

  3. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |

  4. If a1,a2,a3,.....an.... are in G.P. then the determinant Delta=|[logan...

    Text Solution

    |

  5. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  6. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |

  7. Let a,b,c, be any real number. Suppose that there are real numbers x,y...

    Text Solution

    |

  8. Let a,b,c be such that b(a+c)ne 0. If |{:(,a,a+1,a-1),(,-b,b+1,b-1),(,...

    Text Solution

    |

  9. If f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):...

    Text Solution

    |

  10. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  11. If the trivial solution is the only solution of the system of equation...

    Text Solution

    |

  12. The number of values of k, for which the system of equations (k""+"...

    Text Solution

    |

  13. If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)...

    Text Solution

    |

  14. The set of the all values of lamda for which the system of linear equa...

    Text Solution

    |

  15. Which of the following values of alpha satisfying the equation |(1+alp...

    Text Solution

    |

  16. The system of linear equations x+lambday-z=0 lambdax-y-z=0 x+y-l...

    Text Solution

    |

  17. The total number of distinct x in R for which |[x, x^2, 1+x^3] , [2x,...

    Text Solution

    |

  18. Let a,lambda,mu in R, Consider the system of linear equations ax+2y=la...

    Text Solution

    |

  19. If S is the set of distinct values of ' b for which the following syst...

    Text Solution

    |