Home
Class 12
MATHS
Solve the following system of equation b...

Solve the following system of equation by Cramer's rule.
x+y+z=9
2x+5y+7z=52
2x+y-z=0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using Cramer's Rule, we follow these steps: ### Given Equations: 1. \( x + y + z = 9 \) (Equation 1) 2. \( 2x + 5y + 7z = 52 \) (Equation 2) 3. \( 2x + y - z = 0 \) (Equation 3) ### Step 1: Formulate the Coefficient Matrix and Calculate the Determinant \( D \) The coefficient matrix \( A \) is formed from the coefficients of \( x, y, z \): \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1 \end{bmatrix} \] Now, we calculate the determinant \( D \): \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix: \[ D = 1 \cdot \begin{vmatrix} 5 & 7 \\ 1 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 7 \\ 2 & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 5 \\ 2 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 5 & 7 \\ 1 & -1 \end{vmatrix} = (5 \cdot -1) - (7 \cdot 1) = -5 - 7 = -12 \) 2. \( \begin{vmatrix} 2 & 7 \\ 2 & -1 \end{vmatrix} = (2 \cdot -1) - (7 \cdot 2) = -2 - 14 = -16 \) 3. \( \begin{vmatrix} 2 & 5 \\ 2 & 1 \end{vmatrix} = (2 \cdot 1) - (5 \cdot 2) = 2 - 10 = -8 \) Now substituting back into the determinant formula: \[ D = 1 \cdot (-12) - 1 \cdot (-16) + 1 \cdot (-8) \] \[ D = -12 + 16 - 8 = -4 \] ### Step 2: Calculate \( D_1 \) Replace the first column of \( A \) with the constants from the right-hand side of the equations: \[ D_1 = \begin{vmatrix} 9 & 1 & 1 \\ 52 & 5 & 7 \\ 0 & 1 & -1 \end{vmatrix} \] Calculating \( D_1 \): \[ D_1 = 9 \cdot \begin{vmatrix} 5 & 7 \\ 1 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 52 & 7 \\ 0 & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 52 & 5 \\ 0 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 5 & 7 \\ 1 & -1 \end{vmatrix} = -12 \) (calculated earlier) 2. \( \begin{vmatrix} 52 & 7 \\ 0 & -1 \end{vmatrix} = (52 \cdot -1) - (7 \cdot 0) = -52 \) 3. \( \begin{vmatrix} 52 & 5 \\ 0 & 1 \end{vmatrix} = (52 \cdot 1) - (5 \cdot 0) = 52 \) Now substituting back into the determinant formula: \[ D_1 = 9 \cdot (-12) - 1 \cdot (-52) + 1 \cdot 52 \] \[ D_1 = -108 + 52 + 52 = -4 \] ### Step 3: Calculate \( D_2 \) Replace the second column of \( A \) with the constants: \[ D_2 = \begin{vmatrix} 1 & 9 & 1 \\ 2 & 52 & 7 \\ 2 & 0 & -1 \end{vmatrix} \] Calculating \( D_2 \): \[ D_2 = 1 \cdot \begin{vmatrix} 52 & 7 \\ 0 & -1 \end{vmatrix} - 9 \cdot \begin{vmatrix} 2 & 7 \\ 2 & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 52 \\ 2 & 0 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 52 & 7 \\ 0 & -1 \end{vmatrix} = -52 \) (calculated earlier) 2. \( \begin{vmatrix} 2 & 7 \\ 2 & -1 \end{vmatrix} = -16 \) (calculated earlier) 3. \( \begin{vmatrix} 2 & 52 \\ 2 & 0 \end{vmatrix} = (2 \cdot 0) - (52 \cdot 2) = -104 \) Now substituting back into the determinant formula: \[ D_2 = 1 \cdot (-52) - 9 \cdot (-16) + 1 \cdot (-104) \] \[ D_2 = -52 + 144 - 104 = -12 \] ### Step 4: Calculate \( D_3 \) Replace the third column of \( A \) with the constants: \[ D_3 = \begin{vmatrix} 1 & 1 & 9 \\ 2 & 5 & 52 \\ 2 & 1 & 0 \end{vmatrix} \] Calculating \( D_3 \): \[ D_3 = 1 \cdot \begin{vmatrix} 5 & 52 \\ 1 & 0 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 52 \\ 2 & 0 \end{vmatrix} + 9 \cdot \begin{vmatrix} 2 & 5 \\ 2 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 5 & 52 \\ 1 & 0 \end{vmatrix} = (5 \cdot 0) - (52 \cdot 1) = -52 \) 2. \( \begin{vmatrix} 2 & 52 \\ 2 & 0 \end{vmatrix} = -104 \) (calculated earlier) 3. \( \begin{vmatrix} 2 & 5 \\ 2 & 1 \end{vmatrix} = -8 \) (calculated earlier) Now substituting back into the determinant formula: \[ D_3 = 1 \cdot (-52) - 1 \cdot (-104) + 9 \cdot (-8) \] \[ D_3 = -52 + 104 - 72 = -20 \] ### Step 5: Calculate Values of \( x, y, z \) Using Cramer’s Rule: \[ x = \frac{D_1}{D} = \frac{-4}{-4} = 1 \] \[ y = \frac{D_2}{D} = \frac{-12}{-4} = 3 \] \[ z = \frac{D_3}{D} = \frac{-20}{-4} = 5 \] ### Final Solution: The solution to the system of equations is: \[ x = 1, \quad y = 3, \quad z = 5 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Single Option Correct Type Questions|2 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equation by Cramer's rule. x+y=4 and 3x-2y=9

Solve the following system of equations by Cramers rule 2x-y=17 , 3x+5y=6

Solve the following system of equations by Cramer's Rule : 3x+y+z=10 , x+y+z=0 , 5x-9y=1 .

Solve the following system of equations by Cramer's Rule : x+3y=4 , y+3z=7 , 4x+z=6

Solve the following system of equations by Cramer's Rule : x+y+z=-1 , x+2y+3z=-4 , x+3y+4z=-6

Solve the following system of linear equations by Cramers rule: 2x-3y-4z=29 ,\ -2x+5y-z=-15 ,\ \ 3x-y+5z=-11

Solve the following system of linear equations by Cramers rule: x+y=5,\ \ y+z=3,\ \ x+z=4

Solve the following system of linear equations by Cramers rule: 6x+y-3z=5,\ \ x+3y-2z=5,\ \ 2x+y+4z=8

Solve the following system of linear equations by Cramers rule: x-2y=4,\ \ -3x+5y=-7

Solve the following system of linear equations by Cramers rule: 2x-y=1,\ \ \ 7x-2y=-7

ARIHANT MATHS-DETERMINANTS -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Solve the following system of equation by Cramer's rule. x+y+z=9 2...

    Text Solution

    |

  2. If a^(2)+b^(2)+c^(2)=-2 and f(x)= |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x...

    Text Solution

    |

  3. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |

  4. If a1,a2,a3,.....an.... are in G.P. then the determinant Delta=|[logan...

    Text Solution

    |

  5. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  6. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |

  7. Let a,b,c, be any real number. Suppose that there are real numbers x,y...

    Text Solution

    |

  8. Let a,b,c be such that b(a+c)ne 0. If |{:(,a,a+1,a-1),(,-b,b+1,b-1),(,...

    Text Solution

    |

  9. If f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):...

    Text Solution

    |

  10. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  11. If the trivial solution is the only solution of the system of equation...

    Text Solution

    |

  12. The number of values of k, for which the system of equations (k""+"...

    Text Solution

    |

  13. If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)...

    Text Solution

    |

  14. The set of the all values of lamda for which the system of linear equa...

    Text Solution

    |

  15. Which of the following values of alpha satisfying the equation |(1+alp...

    Text Solution

    |

  16. The system of linear equations x+lambday-z=0 lambdax-y-z=0 x+y-l...

    Text Solution

    |

  17. The total number of distinct x in R for which |[x, x^2, 1+x^3] , [2x,...

    Text Solution

    |

  18. Let a,lambda,mu in R, Consider the system of linear equations ax+2y=la...

    Text Solution

    |

  19. If S is the set of distinct values of ' b for which the following syst...

    Text Solution

    |