Home
Class 12
MATHS
If Delta (x)=|{:(1,cos x,1-cos x),(1+sin...

If `Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}|` then `int_(0)^(pi//2)Delta(x)` dx is equal to

A

`-(1)/(2)`

B

0

C

`(1)/(4)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral of the determinant given by: \[ \Delta(x) = \begin{vmatrix} 1 & \cos x & 1 - \cos x \\ 1 + \sin x & \cos x & 1 + \sin x - \cos x \\ \sin x & \sin x & 1 \end{vmatrix} \] We will follow these steps: ### Step 1: Simplify the Determinant We start by simplifying the determinant. We can perform column operations to make the calculations easier. 1. Replace \( C_1 \) with \( C_1 - C_3 \): \[ C_1 \rightarrow C_1 - C_3 \] This gives us: \[ \Delta(x) = \begin{vmatrix} 1 & \cos x & 1 - \cos x \\ 1 + \sin x & \cos x & 1 + \sin x - \cos x \\ \sin x - 1 & \sin x & 1 \end{vmatrix} \] ### Step 2: Further Simplify the Determinant Next, we can perform another column operation: 2. Replace \( C_1 \) with \( C_1 - C_2 \): \[ C_1 \rightarrow C_1 - C_2 \] This gives us: \[ \Delta(x) = \begin{vmatrix} 1 - \cos x & \cos x & 1 - \cos x \\ (1 + \sin x) - \cos x & \cos x & 1 + \sin x - \cos x \\ \sin x - 1 - \sin x & \sin x & 1 \end{vmatrix} \] ### Step 3: Calculate the Determinant Now we can calculate the determinant: 3. The determinant simplifies to: \[ \Delta(x) = \begin{vmatrix} 1 - \cos x & \cos x & 1 - \cos x \\ 1 + \sin x - \cos x & \cos x & 1 + \sin x - \cos x \\ -1 & \sin x & 1 \end{vmatrix} \] After performing the determinant calculations (using cofactor expansion or other methods), we find: \[ \Delta(x) = -\sin x \cos x = -\frac{1}{2} \sin(2x) \] ### Step 4: Evaluate the Integral Now we need to evaluate the integral: \[ \int_0^{\frac{\pi}{2}} \Delta(x) \, dx = \int_0^{\frac{\pi}{2}} -\frac{1}{2} \sin(2x) \, dx \] 4. Factor out the constant: \[ = -\frac{1}{2} \int_0^{\frac{\pi}{2}} \sin(2x) \, dx \] 5. The integral of \(\sin(2x)\) is: \[ = -\frac{1}{2} \left[-\frac{1}{2} \cos(2x)\right]_0^{\frac{\pi}{2}} = -\frac{1}{2} \left[-\frac{1}{2} (\cos(\pi) - \cos(0))\right] \] 6. Substitute the limits: \[ = -\frac{1}{2} \left[-\frac{1}{2} (-1 - 1)\right] = -\frac{1}{2} \left[-\frac{1}{2} (-2)\right] = -\frac{1}{2} \cdot 1 = -\frac{1}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_0^{\frac{\pi}{2}} \Delta(x) \, dx = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Single Option Correct Type Questions|2 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If delta(x)=|[1,cosx,1-cosx],[1+sinx,cosx,1+sinx-cosx],[sinx,sinx,1]|, then int_0^(pi/2)delta(x)dx is equal to

Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx,-cosx,0)| then int_(0)^(pi//2){Delta(x)+Delta'(x)]dx equals

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

If Delta=|[2 cos^2 x, sin 2x, -sin x] , [sin 2x, 2sin^2x, cos x] ,[sinx, -cosx, 0] |, , then int_0^(pi/2) (Delta+Delta') dx is equal to

int(1+cos x)sinx dx

"int(cosx-sinx)/((sin x+cos x))dx

I=inte^(cosx-sinx)(sin x+cos x)dx

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

ARIHANT MATHS-DETERMINANTS -Exercise (Questions Asked In Previous 13 Years Exam)
  1. If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,si...

    Text Solution

    |

  2. If a^(2)+b^(2)+c^(2)=-2 and f(x)= |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x...

    Text Solution

    |

  3. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |

  4. If a1,a2,a3,.....an.... are in G.P. then the determinant Delta=|[logan...

    Text Solution

    |

  5. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  6. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |

  7. Let a,b,c, be any real number. Suppose that there are real numbers x,y...

    Text Solution

    |

  8. Let a,b,c be such that b(a+c)ne 0. If |{:(,a,a+1,a-1),(,-b,b+1,b-1),(,...

    Text Solution

    |

  9. If f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):...

    Text Solution

    |

  10. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  11. If the trivial solution is the only solution of the system of equation...

    Text Solution

    |

  12. The number of values of k, for which the system of equations (k""+"...

    Text Solution

    |

  13. If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)...

    Text Solution

    |

  14. The set of the all values of lamda for which the system of linear equa...

    Text Solution

    |

  15. Which of the following values of alpha satisfying the equation |(1+alp...

    Text Solution

    |

  16. The system of linear equations x+lambday-z=0 lambdax-y-z=0 x+y-l...

    Text Solution

    |

  17. The total number of distinct x in R for which |[x, x^2, 1+x^3] , [2x,...

    Text Solution

    |

  18. Let a,lambda,mu in R, Consider the system of linear equations ax+2y=la...

    Text Solution

    |

  19. If S is the set of distinct values of ' b for which the following syst...

    Text Solution

    |