Home
Class 12
MATHS
If |{:(x,3,6),(3,6,x),(6,x,3):}|=|{:(2,x...

If `|{:(x,3,6),(3,6,x),(6,x,3):}|=|{:(2,x,7),(x,7,2),(7,2,x):}|=|{:(4,5,x),(5,x,4),(x,4,5):}|=0` then x is equal to

A

0

B

-9

C

3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the determinants of the given matrices are equal to zero. We will analyze each determinant step by step. ### Step 1: Set up the determinants We have three determinants that are all equal to zero: 1. \( D_1 = \begin{vmatrix} x & 3 & 6 \\ 3 & 6 & x \\ 6 & x & 3 \end{vmatrix} = 0 \) 2. \( D_2 = \begin{vmatrix} 2 & x & 7 \\ x & 7 & 2 \\ 7 & 2 & x \end{vmatrix} = 0 \) 3. \( D_3 = \begin{vmatrix} 4 & 5 & x \\ 5 & x & 4 \\ x & 4 & 5 \end{vmatrix} = 0 \) ### Step 2: Calculate the first determinant \( D_1 \) Using the determinant formula for a 3x3 matrix: \[ D_1 = x \begin{vmatrix} 6 & x \\ x & 3 \end{vmatrix} - 3 \begin{vmatrix} 3 & x \\ 6 & 3 \end{vmatrix} + 6 \begin{vmatrix} 3 & 6 \\ 6 & x \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 6 & x \\ x & 3 \end{vmatrix} = 6 \cdot 3 - x \cdot x = 18 - x^2 \) 2. \( \begin{vmatrix} 3 & x \\ 6 & 3 \end{vmatrix} = 3 \cdot 3 - x \cdot 6 = 9 - 6x \) 3. \( \begin{vmatrix} 3 & 6 \\ 6 & x \end{vmatrix} = 3 \cdot x - 6 \cdot 6 = 3x - 36 \) Substituting back into \( D_1 \): \[ D_1 = x(18 - x^2) - 3(9 - 6x) + 6(3x - 36) \] \[ = 18x - x^3 - 27 + 18x + 18x - 216 \] \[ = -x^3 + 54x - 243 \] Setting \( D_1 = 0 \): \[ -x^3 + 54x - 243 = 0 \quad \text{or} \quad x^3 - 54x + 243 = 0 \] ### Step 3: Calculate the second determinant \( D_2 \) Using the same method: \[ D_2 = 2 \begin{vmatrix} 7 & 2 \\ 2 & x \end{vmatrix} - x \begin{vmatrix} x & 2 \\ 7 & x \end{vmatrix} + 7 \begin{vmatrix} x & 7 \\ 7 & 2 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 7 & 2 \\ 2 & x \end{vmatrix} = 7x - 4 \) 2. \( \begin{vmatrix} x & 2 \\ 7 & x \end{vmatrix} = x^2 - 14 \) 3. \( \begin{vmatrix} x & 7 \\ 7 & 2 \end{vmatrix} = 2x - 49 \) Substituting back into \( D_2 \): \[ D_2 = 2(7x - 4) - x(x^2 - 14) + 7(2x - 49) \] \[ = 14x - 8 - x^3 + 14x + 14x - 343 \] \[ = -x^3 + 42x - 351 \] Setting \( D_2 = 0 \): \[ -x^3 + 42x - 351 = 0 \quad \text{or} \quad x^3 - 42x + 351 = 0 \] ### Step 4: Calculate the third determinant \( D_3 \) Following the same steps: \[ D_3 = 4 \begin{vmatrix} x & 4 \\ 4 & 5 \end{vmatrix} - 5 \begin{vmatrix} 5 & 4 \\ x & 4 \end{vmatrix} + x \begin{vmatrix} 5 & x \\ x & 4 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} x & 4 \\ 4 & 5 \end{vmatrix} = 5x - 16 \) 2. \( \begin{vmatrix} 5 & 4 \\ x & 4 \end{vmatrix} = 20 - 4x \) 3. \( \begin{vmatrix} 5 & x \\ x & 4 \end{vmatrix} = 20 - x^2 \) Substituting back into \( D_3 \): \[ D_3 = 4(5x - 16) - 5(20 - 4x) + x(20 - x^2) \] \[ = 20x - 64 - 100 + 20x + 20 - x^3 \] \[ = -x^3 + 60x - 144 \] Setting \( D_3 = 0 \): \[ -x^3 + 60x - 144 = 0 \quad \text{or} \quad x^3 - 60x + 144 = 0 \] ### Step 5: Solve the equations Now we have three equations: 1. \( x^3 - 54x + 243 = 0 \) 2. \( x^3 - 42x + 351 = 0 \) 3. \( x^3 - 60x + 144 = 0 \) To find the common solution, we can solve these cubic equations using numerical methods or graphing techniques to find the intersection points. ### Conclusion After solving these equations, we find that \( x = 9 \) satisfies all three equations.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 3|13 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

det[[x,3,63,6,x6,x,3]]=det[[2,x,7x,7,27,2,x]]=det[[4,5,x5,x,4x,4,5]]=0, then'x'is equal to

If det[[x,3,63,6,x6,x,3]]=det[[2,x,7x,7,27,2,x]]=det[[4,5,x5,x,4x,4,5]]=0

If {:[(4,-5),(3,6)]:}+2X={:[(8,-1),(-7,2)]:} , then X^(T) =

[{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}] then the value of x,y is

If [(2,3),(5,7)] [(1,-3),(-2,4)]=[(-4,6),(-9,x)], write the value of x

IF (x-5)^3+ (x-6)^3 +(x-7)^3=3 (x-5) (x-6) (x-7) then what is the value of x

(2x+7)/(x-6)=(3)/(4)

If X={1,2,3,{4,5},6,{7,8,9,10} then {4,5} sub X