Home
Class 12
MATHS
If a^(2)+b^(2)+c^(2)=-2 and f(x)= |{:(1+...

If `a^(2)+b^(2)+c^(2)`=-2 and f(x)= `|{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((1+a^(2))x,1+b^(2)x,(1+c^(2))x),((1+a^(2))x,(1+b^(2))x,1+c^(2)x):}|` the f(x) is a polynomial of degree

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the degree of the polynomial \( f(x) \) defined by the determinant: \[ f(x) = \left| \begin{array}{ccc} 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \\ 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \\ 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \end{array} \right| \] Given that \( a^2 + b^2 + c^2 = -2 \), we will proceed step by step. ### Step 1: Rewrite the Determinant The determinant can be rewritten as: \[ f(x) = \left| \begin{array}{ccc} 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \\ 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \\ 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \end{array} \right| \] ### Step 2: Apply Row Operations We can simplify the determinant by performing row operations. Specifically, we can subtract the second row from the first and the third row from the second: \[ f(x) = \left| \begin{array}{ccc} 0 & 0 & 0 \\ 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \\ 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \end{array} \right| \] ### Step 3: Evaluate the Determinant Since we have two identical rows, the determinant evaluates to zero: \[ f(x) = 0 \] ### Step 4: Degree of the Polynomial Since \( f(x) = 0 \), it is a polynomial of degree 0. ### Conclusion Thus, the degree of the polynomial \( f(x) \) is: \[ \text{Degree of } f(x) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 3|13 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)+c^(2) =-2 and f(x)= |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((1+a^(2))x,1+b^(2)x,(1+c^(2))x),((1+a^(2))x,(1+b^(2))x,1+c^(2)x):}| then f(x) is a polynomial of degree

If a^(2) + b^(2) + c^(2) = -2 and f(x) = |(1 + a^(2)x,(1 + b^(2))x,(1 + c^(2)) x),((1 + a^(2))x,1 + b^(2)x,(1 + c^(2))x),((1 + a^(2)) x,(1 + b^(2))x,1 + c^(2)x)| , then f(x) is a polynomial of degree

If a^2+b^2+c^2=-2a n df(x)= |a+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c^2)x(1+a^2)x(1+b^2)x1+c^2x| , then f(x) is a polynomial of degree 0 b. 1 c. 2 d. 3

If a^2+b^2+c^2=-2\ a b n df(x)=|1+a^xx(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c^2)x(1+a^2)x(1+b^2)x1+c^2x| , then f(x) is a polynomial of degree- a. 2 b. \ 3 c. \ 0 d. 1

prove that |{:((a-x)^(2),,(a-y)^(2),,(a-z)^(2)),((b-x)^(2),,(b-y)^(2),,(b-z)^(2)),((c-x)^(2),,(c-y)^(2),,(c-z)^(2)):}| |{:((1+ax)^(2),,(1+bx)^(2),,(1+cx)^(2)),((1+ay)^(2),,(1+by)^(2),,(1+cy)^(2)),((1+az)^(2),,(1+bx)^(2),,(1+cz)^(2)):}| =2 (b-c)(c-a)(a-b)xx (y-z) (z-x)(x-y)

If the polynomial f(x) = |{:((1+x)^(a), (2+x)^(b),1),(1, (1 + x)^(a), (2 + x)^(b)),((2+x)^(b) , 1, (1+x)^(a)) :}| then the constant term of f(x) is