Home
Class 12
MATHS
The ends of a rod of length l move on tw...

The ends of a rod of length l move on two mutually perpendicular lines. Find the locus of the point on the rod which divides it in the ratio 1 : 2.

Text Solution

Verified by Experts

The correct Answer is:
`9x^(2)+36y^(2)=4l^(2)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|15 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|7 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise For Session 3|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

The ends of a rod of length k moves on two positive coordinate axes.The locus of the point on the rod,which divides it in the ratio l:m is

A straight line segment of length/moves with its ends on two mutually perpendicular lines. Find the locus of the point which divides the line segment in the ratio 1:2

The ends of a rod of length l move on the co- ordinate axes.The lecus of the point on the rod which divides it in the ratio 1:2 is

If the extremities of a line segment of length l moves in two fixed perpendicular straight lines, then the locus of the point which divides this line segment in the ratio 1 : 2 is-

A rod of length l slides with its ends on two perpendicular lines.Find the locus of its midpoint.

A stick of length l slides with its ends on two mutully perpendicular lines.Find the locus of the middle point of the stick.

The ends A and B of a straight rod of length 20 inches in length moves on two mutually perpendicular lines.If the velocity of B is 8 inches/sec when it is 12 inches from point of intersection 'O',of two perpendicular lines then velocity of midpoint of the rod is

A line segment AB of length a moves with its ends on the axes.The locus of the point P which divides the segment in the ratio 1:2 is

ARIHANT MATHS-COORDINATE SYSTEM AND COORDINATES -Exercise For Session 4
  1. The equation of the locus of points equidistant from (-1-1) and (4,2...

    Text Solution

    |

  2. The equation of the locus of a point which moves so that its distance ...

    Text Solution

    |

  3. If the coordinates of a vartiable point P be (t+(1)/(t), t-(1)/(t)), w...

    Text Solution

    |

  4. If the coordinates of a variable point be (cos theta + sin theta, sin ...

    Text Solution

    |

  5. If a point moves such that twice its distance from the axis of x excee...

    Text Solution

    |

  6. The equation 4xy-3x^(2)=a^(2) become when the axes are turned through ...

    Text Solution

    |

  7. Transform the equation x^(2)-3xy+11x-12y+36=0 to parallel axes through...

    Text Solution

    |

  8. Find the locus of a point equidistant from the point (2,4) and the ...

    Text Solution

    |

  9. Find the equation of the locus of the points twice as from (-a, 0) as ...

    Text Solution

    |

  10. OA and OB are two perpendicular straight lines. A straight line AB is ...

    Text Solution

    |

  11. The ends of a rod of length l move on two mutually perpendicular lines...

    Text Solution

    |

  12. The coordinates of three points O, A, B are (0, 0), (0,4) and (6, 0) r...

    Text Solution

    |

  13. What does the equation (a-b)(x^2+y^2)-2a b x=0 become if the origin...

    Text Solution

    |

  14. The equation x^(2)+2xy+4=0 is transformed to the parallel axes through...

    Text Solution

    |

  15. Show that if the axes be turned through 7(1^(@))/(2), the equation sqr...

    Text Solution

    |

  16. Find the angle through which the axes may be turned so that the equati...

    Text Solution

    |

  17. Transform 12x^(2)+7xy-12y^(2)-17x-31y-7=0 to rectangular through the p...

    Text Solution

    |