Home
Class 12
MATHS
IF P1P2 and Q1Q2 two focal chords of a...

IF `P_1P_2` and `Q_1Q_2` two focal chords of a parabola `y^2=4ax` at right angles, then

A

area of the quadrilateral `P_1Q_1P_2Q_2` is minimum when the chords are inclined at an angle `pi//4` to the axis of the parabola.

B

minimum area is twice the area of the square on the latusrectum of the parabola.

C

minimum area of quadrilateral `P_1Q_1P_2Q_2` cannot be found

D

minimum area is thrice the area of the square on the latusrectum of the parabola.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    ARIHANT MATHS|Exercise Exercise For Session 1|20 Videos
  • PARABOLA

    ARIHANT MATHS|Exercise Exercise For Session 2|25 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|28 Videos

Similar Questions

Explore conceptually related problems

Statement 1: The length of focal chord of a parabola y^(2)=8x making on an angle of 60^(@) with the x-axis is 32. Statement 2: The length of focal chord of a parabola y^(2)=4ax making an angle with the x -axis is 4a cos ec^(2)alpha

Length of the focal chord of the parabola y^(2)=4ax at a distance p from the vertex is:

If P and Q are the end points of a focal chord of the parabola y^(2)=4ax- far with focus isthen prove that (1)/(|FP|)+(1)/(|FQ|)=(2)/(l), where l is the length of semi-latus rectum of the parabola.

PSQ is a focal chord of the parabola y^(2)=16x . If P=(1,4) then (SP)/(SQ)=

Let PQ be a focal chord of the parabola y^(2)=4ax . The tangents to the parabola at P and Q meet at point lying on the line y=2x+a,alt0 . If chord PQ subtends an angle theta at the vertex of y^(2)=4ax , then tantheta=

ARIHANT MATHS-PARABOLA-Exercise (Questions Asked In Previous 13 Years Exam)
  1. IF P1P2 and Q1Q2 two focal chords of a parabola y^2=4ax at right ang...

    Text Solution

    |

  2. Tangent to the curve y=x^2+6 at a point (1,7) touches the circle x^2+y...

    Text Solution

    |

  3. let P be the point (1, 0) and Q be a point on the locus y^2= 8x. The l...

    Text Solution

    |

  4. The axis of parabola is along the line y=x and the distance of its ver...

    Text Solution

    |

  5. The equations of the common tangents to the parabola y = x^2 and y=-...

    Text Solution

    |

  6. The locus of the vertices of the family of parabolas y =[a^3x^2]/3 + [...

    Text Solution

    |

  7. Angle between the tangents to the curve y=x^2-5x+6 at the points (2,0)...

    Text Solution

    |

  8. Consider the circle x^2 + y^2 = 9 and the parabola y^2 = 8x. They inte...

    Text Solution

    |

  9. Consider the circle x^2 + y^2 = 9 and the parabola y^2 = 8x. They inte...

    Text Solution

    |

  10. Consider the circle x^2 + y^2 = 9 and the parabola y^2 = 8x. They inte...

    Text Solution

    |

  11. Statement I The curve y = x^2/2+x+1 is symmetric with respect to the l...

    Text Solution

    |

  12. The equation of a tangent to the parabola y^2=""8x""i s""y""=""x""+...

    Text Solution

    |

  13. Consider the two curves C1 ; y^2 = 4x, C2 : x^2 + y^2 - 6x + 1 = 0 the...

    Text Solution

    |

  14. A parabola has the origin as its focus and the line x=2 as the directr...

    Text Solution

    |

  15. The tangent PT and the normal PN to the parabola y^2=4ax at a point P...

    Text Solution

    |

  16. Let A and B be two distinct points on the parabola y^2 = 4x. If the ax...

    Text Solution

    |

  17. If two tangents drawn from a point P to the parabola y2 = 4x are at ri...

    Text Solution

    |

  18. Consider the parabola y^2 = 8x. Let Delta1 be the area of the triangle...

    Text Solution

    |

  19. Let (x,y) be any point on the parabola y^2 = 4x. Let P be the point t...

    Text Solution

    |

  20. Let (x,y) be any point on the parabola y^2 = 4x. Let P be the point t...

    Text Solution

    |

  21. The shortest distance between line y-x=1 and curve x=y^2 is

    Text Solution

    |